Projekt-Homepage

Project:Vision based robot navigation

Researchers: Rosenhahn, B., Grest, D., Sommer, G.

This page contains some research results on vision based robot navigation. We had several student projects dealing with vision based self-localization of mobile robots.
As shown in the previous page, we are interested in visual self-localization of mobile robots. The reason for this research topic is, that the accumulated odometric data of the robot movements are too inexact for robust navigation. In contrast to ultrasonic based navigation, the use of visual information becomes more and more popular.
The reason for the growing interest in visual navigation are its closeness to human navigation and the generalization capabilities of the human eye as sensor in combination with the brain as visual system: Humans not only navigate with the help of their eyes, they also perform object recognition, object grasping and manipulation with their help. Such abilities are important for cognitive tasks and gives the option for further use of information for more complex behaviors in artificial systems.
We implemented a running system, which enables a mobile robot (B21) to navigate with respect to an a priori known landmark. The tasks we solve in this context are the combination of image feature extraction, pose estimation, matching and path planning.
The vision modules are the following:
NavVSHough.jpg The image feature extraction consists of a modified Hough transformation algorithm.
NavVSUntransformed.jpg We use the odometric data of the robot to gain a tracking situation and apply a local search strategy to estimate the corespondences and the pose simultanousely. Please visit the 2D-3D Pose Estimation Project page for more details about pose estimation.
NavVStransformed.jpg After successfull matching and pose estimation we are able to update the position of the mobile robot. As can be seen, the algorithm even works with partially occluded images and missing or non-extractable wedges of the landmark.
The following images show the B21-mobile robot moving around in our Lab.
B21movie3.jpg
Further information:

Bodo Rosenhahn
Daniel Grest

Publications:

2004 Pose Estimation of Free-form Objects
Rosenhahn B., Sommer G., Klette R.
Technical Report 0401, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, März 2004
PDF, Bibtex
2003 Pose Estimation Revisited
Rosenhahn B.
Dissertation, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, 2003.
PDF, Bibtex, Abtract
2002 Pose Estimation in Conformal Geometric Algebra, Part I: The Stratification of Mathematical Spaces, PartII: Real-time Pose Estimation using Extended Feature Concepts
Rosenhahn B., Sommer G.
Technical Report 0206, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, Novembe r 2002
PDF, Bibtex
2002 Adaptive pose estimation for different corresponding entities
Rosenhahn B., Sommer G.
In L. Van Gool, editor, Pattern Recognition, 24. Symposium für Mustererkennung, Zürich, September 2002, Vol. 2449 of LNCS, pp . 265-273. Springer-Verlag, Berlin Heidelberg, 2002
PDF, Bibtex
2001 Learning-Based Robot Vision
Pauli J.
Springer-Verlag, Heidelberg, 2001
PDF, Bibtex
2001 A unified description of multiple view geometry
Perwass C., Lasenby J.
In G. Sommer, editor, Geometric Computing with Clifford Algebra, pp. 337-369. Springer-Verlag, Heidelberg, 2001
PDF, PS, Bibtex
2001 Tracking with a novel pose estimation algorithm
Rosenhahn B., Krüger N., Rabsch T., Sommer G.
In R. Klette, S. Peleg and G. Sommer, editors, International Workshop ``Robot Vision 2001ŽŽ Auckland, New-Zealand, Vol. 1998 of LNCS, pp. 9-18. Springer-Verlag, 2001
PDF, PS, Bibtex
2001 The motor extended Kalman filter for dynamic rigid motion estimation from line observations
Zhang Y., Sommer G., Bayro-Corrochano E.
In G. Sommer, editor, Geometric Computing with Clifford Algebra, pp. 501-530. Springer-Verlag, Heidelberg, 2001
PDF, PS, Bibtex
2000 Development of Camera-Equipped Robot Systems
Pauli J.
Technical Report 9904, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, August 2000
PDF, PS, Bibtex
2000 Compatibilities for boundary extraction
Pauli J., Sommer G.
In G. Sommer, N. Krüger and C. Perwass, editors, 22. Symposium für Mustererkennung, DAGM 2000, Kiel, pp. 468-475. Springer-Ve rlag, 2000
PDF, PS, Bibtex
2000 Pose estimation in the language of kinematics
Rosenhahn B., Zhang Y., Sommer G.
In G. Sommer and Y. Zeevi, editors, 2nd International Workshop on Algebraic Frames for the Perception-Action Cycle, AFPAC 2000, K iel, Vol. 1888 of LNCS, pp. 284-293. Springer-Verlag, 2000
PDF, PS, Bibtex
1999 The global algebraic frame of the perception-action cycle
Sommer G.
In B. Jähne, H. Haussecker and P. Geissler, editors, Handbook of Computer Vision and Applications, pp. 221-264. Academic Pres s, San Diego, 1999
PDF, Bibtex
1998 Geometric/photometric consensus and regular shape quasi-invariants for object localization and boundary extraction
Pauli J.
Technical Report 9805, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, Mai 1998
PDF, PS, Bibtex