The presented thesis deals with the 2D-3D pose estimation problem. Pose estimation means to estimate the relative position and orientation of a 3D object with respect to a reference camera system. The main focus concentrates on the geometric modeling and application of the pose problem. To deal with the different geometric spaces (Euclidean, affine and projective ones), a homogeneous model for conformal geometry is applied in the geometric algebra framework. It allows for a compact and linear modeling of the pose scenario. In the chosen embedding of the pose problem, a rigid body motion is represented as an orthogonal transformation whose parameters can be estimated efficiently in the corresponding Lie algebra. In addition, the chosen algebraic embedding allows the modeling of extended features derived from sphere concepts in contrast to point concepts used in classical vector calculus. For pose estimation, 3D object models are further treated two-fold, feature based and free-form based: While the feature based pose scenarios provide constraint equations to link different image and object entities, the free-form approach for pose estimation is achieved by applying extracted image silhouettes from objects on 3D free-form contours modeled by 3D Fourier descriptors. In conformal geometric algebra an extended scenario is derived, which deals beside point features with higher-order features such as lines, planes, circles, spheres, kinematic chains or cycloidal curves. This scenario is extended to general free-form contours by interpreting contours generated with 3D Fourier descriptors as n-times nested cycloidal curves. The introduced method for shape modeling links signal theory, geometry and kinematics and is applied advantageously for 2D-3D silhouette based free-form pose estimation. The experiments show the real-time capability and noise stability of the algorithms. Experiments of a running navigation system with visual self-localization are also presented.