
TGI WS 2016/17 Sheet 7

Sebastian Löhr, Thure Dührsen 2017-02-14

Exercise 1

Fix L1 := {
w ∈ {a,b}∗ : |w|a ≡2 |w|b

}
and L2 := {

w ∈ {a,b}∗ : |w|a 6≡2 |w|b
}
.

Claim

(a) A regular expression describing L1 is given by

((a|b) · (a|b))∗ .

A DFA describing L1 is shown to the right.

(b) A regular expression describing L2 is given by

(a|b) · ((a|b) · (a|b))∗ .

A DFA describing L2 is shown to the right.

f

q

a, b a, b

f

q

a, b a, b

Proof

(a) L1 describes the the language that holds all words from {a,b}∗ where if the count

of a is even, also the count of b must be even.

Also if the count of a is odd, it has to have an odd count of b’s.

So if we read an a or an b we need to read an a or an b to accept the word.

(b) L2 describes the the language that holds all words from {a,b}∗ where if the count

of a is even, the count of b must be odd.

Also if the count of a is odd, it has to have an even count of b’s.

We have to start with an a or b, after that it’s the same as L1.

ä

1

Exercise 2

Let n be a natural number, let Σ := {a}, and let A be a DFA that accepts the single word

an ∈Σ∗.

Claim The automaton A has at least n states.

Proof

Suppose there is a DFA A with less than n states that accepts the word an, and choose

one. In order to accept the word an, exactly n transitions must occur, because every sym-

bol read from the input corresponds to exactly one transition and we must read exactly

n symbols. As A has less than n states, at least one of those states must be visited more

than once, i. e. we have a loop or even a cycle in the graph representing A , and we must

traverse the loop or the cycle in order to accept an.

But this means we can traverse the loop or the cycle more than once, which means that

there exist k, l ∈N such that

∀m ∈N : am·k+l ∈ L(A) ,

i. e. L(A) is infinite, contradicting the fact that A accepts the single word an.

Therefore every DFA that accepts exactly the language {an} has at least n states.

ä

2

Exercise 3

Let A be the automaton shown to the

right. Let

R = (aa|bb)∗ · ((ab|ba) · (aa|bb)∗ · (ba|ab))∗

Claim R is a regular expression for the

automaton.

F

A

B

H

a a

bb

b a

a b a a

bbab

ba

Proof Obviously the automaton accepts the empty word ε. Starting at state F we can

use two paths if we read an a and two other paths if we read an b.

Assume we read an a so we can use the path to A, we get back in the final state by read-

ing another a. So we know (aa)∗ is part of R.

Similiar to that we get to B reading a b and need another b to accept it. So we get (bb)∗

is part of R too. We don’t want to fix an order, we write (aa|bb)∗ as part of R.

To get to H we have two possible paths, reading ab or ba. based from H we have the

same situation as in F seen before, so we can read (aa|bb)∗ at this point.

Now we have a path back to F using ab or ba again. So we can setup our regular expres-

sion: R = (aa|bb)∗ · ((ab|ba) · (aa|bb)∗ · (ba|ab))∗.

ä

3

Exercise 4

Many of the ideas (in particular, the claim in part (a)) are the combined work of Etienne,

Daniel, Caro and myself.

All of the mistakes (in particular, those in part (b)) are, of course, my own. tdu

Let Σ be an alphabet. Let L and M be languages over Σ. Define ∃ : Σ∗ →P (Σ∗) by

u ∃

ε := {u}

ε

∃ v := {v}

ua ∃ vb :=
(
(u ∃ vb)◦ {a}

)
∪

(
(ua ∃ v)◦ {b}

)
 for all u, v ∈Σ∗ and for all a, b ∈Σ.

Furthermore, define

L ∃ M := ⋃
u∈L
v∈M

u ∃ v .

Claim

(a) (ab)∗ ∃ (ba)∗ = (
(ab)∪ (ba)

)∗
(b) If L and M are regular languages, then L ∃ M is also a regular language.

Proof

(a) Intuitively clear from the “deck of cards” metaphor, but lack of time prevents us

from giving a formal proof at this time. But just wait until after Christmas, for

Sheet seven-and-a-half! ..
^

(b) Assume that L and M are both regular languages.

As L is regular, choose a DFA A = (Q1, Σ, δ1, q1, F1) such that L(A)= L.

As M is regular, choose a DFA B = (Q2, Σ, δ2, q2, F2) such that L(B)= M.

Construct a NFA A (N) from A by setting A (N) := (Q1, Σ, δ(N)
1 , q1, F1), where

∀ q ∈Q1 ∀a ∈Σ∗ :
(
(q, a),

{
q, q′}) ∈ δ(N)

1 ⇐⇒ (
(q, a), q′) ∈ δ1

and construct a NFA B(N) from B by setting B(N) := (Q2, Σ, δ(N)
2 , q2, F2), where

∀ q ∈Q2 ∀a ∈Σ∗ :
(
(q, a),

{
q, q′}) ∈ δ(N)

2 ⇐⇒ (
(q, a), q′) ∈ δ2 .

For ease of presentation, let q(A (N)) stand for the state that A (N) is currently in,

and let q(B(N)) stand for the state that B(N) is currently in.

Now, construct another NFA C = (Q3, Σ, δ3, A, K) by setting

Q3 := {A, V1, V2, K}

4

and by letting δ3 be defined by

∀ q ∈Q3 ∀a ∈Σ∗ : δ3(q, a)=



A if δ(N)
1 (q(A (N)), a) ∉ F1 and δ(N)

2 (q(B(N)), a) ∉ F2

V1 if δ(N)
1 (q(A (N)), a) ∈ F1 and δ(N)

2 (q(B(N)), a) ∉ F2

V2 if δ(N)
1 (q(A (N)), a) ∉ F1 and δ(N)

2 (q(B(N)), a) ∈ F2

K if δ(N)
1 (q(A (N)), a) ∈ F1 and δ(N)

2 (q(B(N)), a) ∈ F2

The construction of A (N) and B(N) enables each of the automata A (N) and B(N) to

have the choice to advance to the next input token or remain at their current state,

as might be required to accept the ∃ isation w of two words u ∈ L and v ∈ M.1 If

none of the automata A (N) and B(N) accepts w, then C remains in A and therefore

does not accept the word.

What we are trying to do here is roughly the following (a TikZpicture hopefully says

more than a thousand words):

A

V1

V2

K
A and B accept at the same time

A does not accept

B does not accept

A accepts

B accepts
A accepts

B accepts

A does not accept

B does not accept

This solution is probably not entirely correct, but at least we tried... and we’re not

in this for the points, anyway.

ä

1In German I would say „Verschränkung“ or something similar, but in English?
“entanglement”? “interlacement”? Something else entirely?

5

