A Partial Evaluator for FlatCurry

Bjorn Peemoller
Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany
bjp@informatik.uni-kiel.de

Partial evaluation of programs is a technique to anticipate the evaluation of
costly computations once at compile-time instead of performing them (possibly
several times) at run-time. Due to the absence of side-effects in purely functional
languages like Haskell or Curry, the results of partial evaluation can be shared
among different calls to the same functions which can considerably decrease the
run-time of such functions.

Generally, when applied to expressions, partial evaluation behaves like (head)
normal form reduction executed at run-time. But in addition, when applied to
expressions with unbound variables, it is capable of performing those parts of the
reduction independent of the values of the unbound variables and, thus, can be
used to partially evaluate function bodies as well as the branches of unevaluated
case-expressions.

Partial evaluation has already been studied for both functional languages such
as Haskell as well as for logic languages like Prolog. Furthermore, Albert, Hanus
and Vidal [2] presented a partial evaluation scheme for FlatCurry, an intermediate
representation of the functional-logic language Curry [3]. Their evaluation scheme
is based on term rewriting and restricted to confluent, i.e., deterministic programs
without recursive let-expressions. However, to be applicable to real-world Curry
programs, it is crucial for a partial evaluator to cover the full source language,
including both logic features such as non-determinism and functional features such
as recursive let-expressions.

In this work, we extend the aforementioned partial evaluator of Albert, Hanus
and Vidal by integrating a new evaluation scheme based on an operational semantics
of FlatCurry [I] to cover the full language of FlatCurry.

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal, Operational semantics for declarative
multi-paradigm languages, Journal of Symbolic Computation 40 (2005), no. 1, 795-829.

[2] E. Albert, M. Hanus, and G. Vidal, A practical partial evaluation scheme for multi-paradigm
declarative languages, vol. 2002, EAPLS, 2002.

[3] M. Hanus (ed.), Curry: An integrated functional logic language (vers. 0.8.3), Available at
http://www.curry-language.org, 2012.


http://www.curry-language.org

