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SAC advocates shape- and rank-generic programming on multi-
dimensional arrays, i.e. SAC supports functions that abstract from
the concrete shape (extent along dimensions) and even from the
rank (number of dimensions) of argument arrays [4]. A multidi-
mensional array in SAC is represented by a triple consisting of the
rank scalar that defines the length of the shape vector. The ele-
ments of the shape vector define the extent of the array along each
dimension, and the product of its elements determines the length of
the data vector, which contains the array elements (in row-major
unrolling). Depending on the amount of compile time structural
information we distinguish between three classes of arrays at run-
time: For rank-generic arrays, all three properties (i.e. rank scalar,
shape vector and data vector) are variable. For shape-generic ar-
rays, the rank scalar is a compile time constant: The length of the
shape vector is known in advance, but its elements are not. For non-
generic arrays both rank scalar and shape vector are constants.

From a software engineering point of view it is (almost) always
desirable to specify functions on the most general input type(s) to
maximise code reuse. For example, a simple structural operation
like rotation should be written in a rank-generic way, a naturally
rank-specific function like an image filter in a shape-generic way.
Very infrequently it is desirable to write code in a non-generic way.
Consequently, the extensive SAC standard library is full of generic,
mostly rank-generic functions.

However, genericity comes at a price. In comparison to non-
generic code the runtime performance of equivalent operations is
substantially lower for shape-generic code and again substantially
lower for rank-generic code [6]. The reasons are manifold and their
individual impact operation-specific, but three categories can be
identified nevertheless: Firstly, generic runtime representations of
arrays need to be maintained, and generic code tends to be less effi-
cient, e.g. no static nesting of loops can be generated to implement
a rank-generic multidimensional array operation. Secondly, many
of the SAC compiler’s advanced optimisations [2, 3] are not as ef-
fective on generic code because certain properties that trigger pro-
gram transformations cannot be inferred. Thirdly, in automatically
parallelised code [1] many organisational decisions must be post-
poned until runtime and the ineffectiveness of optimisations inflicts
frequent synchronisation barriers and superfluous communication.

In order to reconcile the desires for generic code and high run-
time performance, the SAC compiler aggressively specialises rank-
generic code into shape-generic code and shape-generic code into
non-generic code. However, regardless of the effort put into com-
piler analyses for rank and shape specialisation, this approach is
fruitless if the necessary information is not available at compile
time as a matter of principle because, for example, the correspond-
ing data is read from a file or the SAC code is called from external
(non-SAC) code via the sac4c foreign language interface [7]. The
latter becomes more and more important as SAC is used as the pri-
mary component language by the coordination language S-Net [5].

To mitigate the negative effect of generic code on runtime per-
formance when specialisation is not an option, we propose an adap-
tive compilation framework that postpones specialisation until run-
time time when all shape information is eventually available. Our
idea goes as follows. Let us assume we compile a SAC library of
generic functions for external use, i.e. there is no opportunity for
rank or shape specialisation whatsoever. Instead of generating (ut-
terly) inefficient generic code to be called from a host program, we
generate actually two codes per function: one that reinstantiates an

intermediate (compiler internal) representation of the function and
one to be called from the host program as a proxy.

A host program calls the proxy function. The proxy function dy-
namically links the running code with the shared library containing
the reinstantiation code and runs that code. As a result the running
code now has access to an intermediate representation of the func-
tion and to the concrete shapes of argument arrays. It combines
these two aspects to augment the reinstantiated intermdiate generic
code with appropriate specialisation information. After that, the
proxy function dynamically links the running code with (a vari-
ant of) the SAC compiler and runs the compiler on the dynamically
created intermediate code. With all shape information available, the
SAC compiler can easily specialise the rank or shpe generic code to
non-generic code and draw from its complete optimisation poten-
tial to generate efficient (parallel) code for the function. A standard
C compiler is used to generate executable code for the current plat-
form, more precisely another shared library. The proxy function
called by the host program eventually links with that shared library
as well and applies the most efficient code to the given arguments.

We plan two refinements: Any adapted function goes into a
repository. Whenever the same proxy function is called again with
structurally equivalent arguments, the adpated function is called
immediately rather than being re-adapted from generic code. The
second refinement is more of a speculative nature and motivated by
the expected abundance of computing resources in the near future.
The proxy function could actually run the dynamic recompilation
code as described above and the original (inefficient) generic code
concurrently. If the generic code is still faster than recompilation
and running of the non-generic code, we can produce a result
quicker. Nevertheless, the specialised version once available will
end up in the repository and may speed up future invocations of
the proxy function. Over time our approach leads to a growing
selection of highly optimised specialisations of generic functions
that incrementally adapt to the structural properties of argument
arrays of library functions. Experience has it that it is quite typical
for array programs to effectively use a limited number of array
shapes even if concrete shapes are not known until runtime.

Our approach differs from just-in-time compilation of Java byte
code (or similar) in several aspects. Hot spots of byte code are
adapted to the platform they run on by generating native code while
the execution platform was left open deliberately at compile time.
Adaptation of (byte) code to its execution environment happens
in a single step. In contrast, our approach adapts code not to its
execution environment but to the structural properties of array
arguments, i.e. the data our code operates on. This adaptation is
an incremental process over the execution time of a program. If
the number of different array shapes used is bound, this adaptation
process converges to a fixed point.

The differences to just-in-time compilation are not just qualita-
tive but also quantitative, partially rooted in application characteris-
tics of array processing. We expect adapted code to run by orders of
magnitude faster than generic code. And, we expect array programs
to run for a long time and to repeatedly execute the same functions
on a relatively small set of argument ranks and shapes. Under these
assumptions we are confident that the benefits of our approach
amortise the invocation of a fully-fledged optimising compiler at
runtime. We also believe that our findings can be generalised to
other languages as the principles are independent of the concrete
design of SAC.
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