
Minimally Strict Polymorphic Functions

Jan Christiansen
Christian-Albrechts-Universität Kiel

jac@informatik.uni-kiel.de

Abstract

In a non-strict functional programming language like Haskell functions
that yield the same results for total arguments can still differ for partial
arguments. We can relate functions that agree for total arguments by a
less-strict ordering. Naturally the question arises whether one can identify
if a function is as non-strict as possible. A tool, called Sloth, assists
programmers in checking whether a function is minimally strict.

To test a polymorphic function we have to choose a monomorphic in-
stance of the function. By employing free theorems we show that a poly-
morphic function is indeed minimally strict if and only if its monomorphic
Boolean instance is minimally strict. In fact, we only prove this statement
for the polymorphic function type ∀α.[α ] → [α ]. But we can generalize
the statement by employing the type classes Foldable and Traversable.


