
Resolving of Intersection Types in Java 5.0

Martin Plümicke

In Java 5.0 the principal type of a given method could often be an intersection type. Only
the restriction that in Java 5.0 the declaration of intersection types is not allowed, avoids these
types. Therefore type inference as described in [Plü07] determines intersection types for some
typeless methods.
There are different classes of intersection types respectively of overloading, which have to be
treated different during compilation. For example a method, which multiples two matrices

class Matrix extends Vector<Vector<Integer>> {
mul(m) { ret = new Matrix(); ...

while(i <size()) { v1 = this.elementAt(i); v2 = new Vector<Integer>();...
while(j < v1.size()) { ...

while(k < v1.size()) {
erg = erg + v1.elementAt(k) * m.elementAt(k).elementAt(j);}

v2.addElement(new Integer(erg)); j++; }
ret.addElement(v2); i++; }

return ret; }}

has a principal intersection type mul: &β,α(β→α), where β is subtype of
Vector<? extends Vector<? extends Integer>> and α a supertype of Matrix. For all types of
the parameter m in the call of mul(m) the same code is executed. Additionally, we consider

class OL { m(Integer x) { return x + x; }
m(Boolean x) { return x || x; }
main(x) { OL ol = new OL(); return ol.m(x); } }

where the intersection type main : Integer → Integer & Boolean → Boolean is inferred. In
this case for the call of main(x) different code, depending on the type of x, is executed.
During compilation the methods mul and main must be treated different. While for mul only
one method for the reduced principal type

Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ...}

is generated, for main two methods are necessary

Integer main(Integer x) { ...}
Boolean main(Boolean x) { ...}.

The differentiation during compilation is done by the call graph of the corresponding argument
type.

References

[Plü07] Martin Plümicke. Typeless Programming in Java 5.0 with wildcards. In Vasco Amaral,
Lúıs Veiga, Lúıs Marcelino, and H. Conrad Cunningham, editors, 5th International
Conference on Principles and Practices of Programming in Java, ACM International
Conference Proceeding Series, pages 73–82, September 2007.

1

