Lava —An Objed-Oriented RAD Language
Designed for Ease of L earning, Use, and Program
Comprehension

Klaus D. Gunther?, Irmtraut Gunther!

1 GMD, Ingtitute for Seaure Teleaoperation, Rheinstr. 75,

D-64295Darmstadt, Germany
{Kl aus. Guent her, Irntraut.Guent her} @ar st adt. gnd. de

Abstract. The growing demand for new software cdlsfor a mnsiderable accé
eration d the software production processand for a sensible relaxation at the
software maintenance front. These goals can be ahieved orly if we can ded-
sively increase the degree of moduarity, variability, comprehensibility of soft-
ware, or short: the degreeof structured programming, as well as the simpli city
of program manipulation, restructuring, and transformation. The experimental
objed-oriented language “Lava” and the asciated programming environment
“LavaPE” attempt to achieve these goals by providing qute anumber of un-
usual feaures. The most remarkable feaures are: 1. Text editors are ommpletely
replacal with Lava-spedfic structure dlitors. 2. A Lava dassconsists of a pub-
lic “interface” and a wmpletely separate, exchangeable “implementation”
which may be stored in a different file. 3. Frameworks and design petterns are
suppated in a very natural way by alowing packages and interfaces to have
overridable type parameters.

1 Introduction

The continuowsly growing demand for new software can be suppied only if the pro-
ductivity of the programming processcan be dedsively increased. (Cf. sedion 3 d
the PITAC Report [10] to the American government, which assgns maximum prior-
ity to thisgoal.)

Moreover, the anourt of work flowing into the mntinuows maintenance of large
commercial software products throughou their life g/cle can be dedsively reduced if
programming languages and programming environments encourage or even enforce
(to some degree a dea and retura subdvison d programs into small, self-
contained, self-evident, independently comprehensible units.

All this means that we caana be satisfied with the popuar programming lan-
guages like C++ [11], Java [3], or Visua Basic. Rather, we have to aim for grealy
improved languages and RAD programming environments

« that relieve the programmers from clericd and error-prone work,

« that in particular replacetext-editors with several kinds of structure-editors,
« that are eay to lean and get alongwith a minimum of orthogoral concepts,
« that fadlit ate program comprehension,

« that fadlitate dea syntadic separation d abstradion levels

1. in the small, by favoring small, self-contained (posshly reaursive) functions
rather than complicated, deeoly nested loop constructs,

2. inthe large, (@) by suppating resting o dedarations acording to their pri-
mary or auxiliary nature, (b) by strictly separating interfaces from implemen-
tations, () by utilizing multiple inheritance to compose large dasss in an
eaily configurable way from spedalized small base dasss that can be im-
plemented independently,

« that clarify the control flow as well as the data flow of programs by appropriate
constructs and restrictions,

« that unify what shoud na be separated ("embedded SQL"),

* that separate what shoud na be intermingled (interfaces and implementations),

e and that suppat reuse and multiple versions of certified componrents and proven
design patterns from clealy documented comporent and pettern libraries.

The experimental programming language Lava and the assciated LavaPE program-
ming environment offer solutions to quite anumber of these problems. The open-
source projed Lavaisintended primarily to provide apuldic playgroundfor experi-
menting with new ways of combining advanced ohjed-oriented language feaures
with ease of use and comprehension. Everybody is invited to participate in this ex-
plorative process Lava is particularly attradive for those reseachers who are inter-
ested in program anaysis, program synthesis, and program transformation, since
Lava programs are processed internally as “abstrad syntax trees’ all the time, begin-
ning from their construction in spedfic structure elitors until their exeaution by the
Lavainterpreter.

An ealy preview version d the Lava programming environment LavaPE (for
Windows 9X/NT/2000 patforms, including a few code samples) can be downloaded
from the Lava web site [8]. There you can find a more cmprehensive online docu-
mentation and further papers. Cf. also [4].

Sedion 2 kelow deds with Lava ontributions to the goals "ease of leaning" and
"ease of use". Sedion 3explains how program comprehension is fadlit ated by qute a
number of different Lava feaures. Sedion 4 oulines how Lava copes with "generic-
ity" in a new way, based on*“virtual types'. These ae particularly suited to provide
very natural spedficaions of "design petterns' and "frameworks', viewed as (groups
of mutually reaursive) “virtualized” types. This cgpability will play a much more
important role in future languages.

2 LavaPE and Ease of Learning/ Ease of Use

2.1 Replacing Text Editorswith Structure Editors

Lava programs are no longer "written" but "constructed" from basic constructs,
using pant/click/drag/drop/cut/copy/paste and menu seledion operations, and this is
true dso for the exeautable parts of Lava programs.

The Lava programming environment LavaPE is completely based onstructure ai-
iting, with two daminating, primary views: the "dedaration view" and the "exec
view" (seeFig.1, last page):

e The dedaration view is used for dedaring various kinds of Lava antities, in par-
ticular new padkages, interfaces, implementations, and their respedive sub-
structures.

» The execview isused to construct the exeautable portions of Lava programs, i.e.,
1. "execs', = bodes of functionsand d "initiators" (= main programs),

2. "constraints’, which may be aciated with interfaces and must be fulfilled

whenever anew objed suppating the respedive interfacehas been created.

The declaration view is a"treeview" to which everybodyis acaistomed, for instance
from the "Explorer" of Microsoft Windows. Dedarations may be nested to any depth
in Lava. Tree onstruction is controlled by todl buttons correspondng to the basic
Lava nations, like "new padkage’, "new interface, "new implementation”, "new
member variable", "new member function”, "new function parameter”, etc. The prop-
erties of these antities are alited using appropriate property sheds. Subtrees can be
easily copied and moved by dag-and-drop operations or expanded/coll apsed by spe-
cific tod buttons.

There ae severa auxiliary tree views the most important of which is used for
spedfying the detail s of an interface or padkage/pattern derivation leading to a de-
rived interfaceor padage/pattern. (SeeFig.1, last page.)

The exec view is a quite normal textual representation d an "exec' or "constraint”.
But althoughit uses the standard Windows "rich edit view", it is not editable diredly
as text. The exeautable program text is rather constructed from a number of basic
statement, expresson, and speda constructs, which would typicdly contain
"placehdders’ (= syntadic variables) <stm>, <expr>, <var>, <type>, <func>, <set>
... for statements, expressons, references... that may be inserted in these places.

In fad, there is no fixed textual syntax of Lavaat al, nor is there aLava parser or
compiler. The point-and click operations of the programmer generate and manipulate
an interna tree representation o the Lava program (an “AST”, short for “abstrad
syntax tree”) directly. The readable representation d dedarations, execs, and con-
straints is generated orly on the fly as long as a wrrespondng dedaration a exec
view isopen.

No text entry whatsoever is required in LavaPE, except for comments, constants,
and rew identifiers. Syntax errors canna occur any longer. Context-related errors are
reported at the ealiest possble time. References to be inserted are seleded from
spedfic combo-boxes whose aurrent content depends largely onthe arrent seledion.

So Lavais not a onventional textual languege, but it is inseparably conreded with
LavaPE.

2.2 Automatic Maintenanceof References

Readable, textual identifiers are, in a sense, meaninglessin Lava. Every Lava etity
has a unique internal identifier that is never changed. All references to Lava entities
are based solely on these internal identifiers. A readable textual name is assciated
with such an immutable, unique, internal identifier at the placewhere the respedive
Lava entity isdedared, andit can be changed ony there.

Since readable representations of Lava programs are generated only on the fly
when they are opened in ore of the Lava structure alitors, al references to Lava
entities will aways be up to date: The textual name of a Lava entity is aways
"fetched" from its adual dedaration and inserted at the placeof reference Textual
names need nd be unique even. But Lava tries to prevent you from using dupicate
names in Lava, of course, since they impair the cmprehensibility of programs and
forceyouto use the "goto dedaration” function o LavaPE to find the adual meaning
of the respedive name.

Automatic maintenance of references is a quite important advantage for source
code maintenance. It happens very often that you would like to assgn a more mean-
ingful name to an existing entity, but it is extremely laborious and baing to identify
al affeded source files and to use string search and replacenent in order to change
al affeded references. Thiswill often prevent you from introducing more significant
names. In Lava you real ony change the name in the dedaration d the respedive
Lava entity.

Automatic maintenance of references applies also in cases where dedarations are
moved (using drag-and-drop) within the Lava dedaration tree or even between df-
ferent files: The path-names of Lava interfaces, padages, functions, etc., that refled
the pasition o these antities in the dedaration treg are changed acordingly in al
references to the dfeded entities. Cf. [1] for an aternative gproach to identifier
change and maintenance.

2.3 Automatic Maintenanceof Function Calls

Ancther kind d automatic maintenance of references applies to member functions of
interfaces and implementations. If you add a delete or permute formal parameters of
afunctionthen al existing invocaions of these functions are changed immediately or
as vonas the mntaining Lava file is opened: Placénolders for adtual parameters are
inserted where new formal parameters have been inserted; adua parameters corre-
spondng to deleted formal parameters are deleted, likewise; the order of adua pa-
rameters is adapted to the new order of the permuted formal parameters.

Thisis again made posshle by the fad that formal parameters of functions, like dl
other Lava antities, have unique internal identifiers and adual parameters refer to
theseinternally.

3 Facilitating Program Comprehension

3.1 Synoptic Dedaration Trees

In sedion 21 we have outlined the nested, treelike structure of Lava dedarations and

the aciated structure editor. This way to ded with dedarations offers dedsive

advantages for program comprehension:

* Youned nd put al dedarationsonasinglelevel but you can nest them acording
to their primary or subardinate, auxili ary nature.

* You can expand and coll apse entire subtrees and in this way switch easily between
nested detail s and "bird's eye view", just asyou reed.

¢ You can easly navigate forth and badk between dedarations and references by
clicking the todl buttons "go to dedaration” (or doule-clicking the reference) and
"return to reference’.

* You can eally re-arrange the tree structure by applying dag-and-drop o
cut/copy/paste operations to individual treeitems or to entire subtrees.

Asfor the “static” nested classes of Java, nesting o dedarations does not establish a
speda semantic relationship between inner and ouer dedarations but is only ameans
to arrange primary and auxili ary dedarations in a meaningful way. Inner dedarations
can always be referenced also from outside, unlessthey are nested in an implementa-
tion, or in a padkage that has been dedared opaque explicitly.

3.2 Earlier and More Complete Err or Reporting

Lava has no compilation phase but chedks for errors after every individua structure
editing operation. So errors are detedted and reported "in embryo", and errorsin ex-
eautable mde ae highlighted by dsplaying the eroneous construct (mostly a single
identifier or constant, rather than just an entire line of code) in bddface ad red color.
Likewise, placéholders that have not yet been replacel with concrete constructs in
exeautable mde ae displayed in red font.

Erroneous dedarations are highlighted by a small red redange that is affixed to
the right side of the correspondng dedaration icon. Error messages belongng to the
current seledion are displayed in a separate aror window (for dedarations as well as
for exeautable wde).

So you lave just to look for remaining red flags in dedarations and for red pa-
tions of exeautable @mde in order to figure out where your program cdls for correc-
tion d errors or for completion. To this end, you can move the arrent seledionto the
next or preceding error in the dedaration treeview aswell asin the execview.

Moreover, comprehension d still i ncomplete and erroneous programs is grealy
fadlitated in Lava by providing several additional fedaures that allow us to perform
more complete thedks for semantic erors:

1. "Single-assgnment" (sedion 35) prevents inadvertent reuse of the same variable
within the same program branch with diff erent meanings; violations are reported as
errors, the last preceding conflicting assgnment is highlighted ona button click.

2. Single-assgnment, combined with a stringent phase-model of objed credion,
initiali zation, customization and wse enables complete initialization chedks. In-
completely initialized ohjeds may be passd as parameters only to "initializers'
(correspondng to constructors in Java/C++); they cannat be used for method cdls.
Initializers must initialize dl non-optional member variables; violations are re-
ported as errors.

3. The digtinction ketween "value objeds', that become immutable &ter initializa-
tion/customizaion, and "state objeds’, that may be thanged again and again, pro-
vides ancther kind d redundancy, which enables valuable alditional cheds (cf.
sedion 34).

4. Lava suppats an advanced ndion d "virtual types' with covariant spedalizaion
(sedion 4). This opens a new dimension d static type checing and ealy error re-
porting where you aherwise would have to resort to "type cats' and runtime type
chedsin C++ and Java.

3.3 Strict Separation of Interfaces and I mplementations

Older, non-objed-oriented languages like Modua-2 and the original version d Ada
that were based on"abstrad data types’, had aready achieved a dean syntadic sepa-
ration d "interfaces/definitions’ and "implementations’ acording to the important
"principle of information hiding’, which we deem to be of vital importance for pro-
gram comprehension and software maintainability / evolvability.

This clea separation has been lost again in ohjed-oriented languages like C++ and
Java. AlthoughJava provides an interfacenaction, while Java dasses contain the im-
plementations of their member functions, you can still use dasesto dedare the types
of variables. A Java interface does not have member variables but only member
functions and thus is not suited for spedfying a data structure together with a ll ec-
tion o methods that can be gplied toit.

In contrast to this, Lava interfaces may contain member functions and member
variables, and they are the only meansto dedare the types of variables.

Unlike Java classes, Lava implementations implement exadly ore interface (and
thus have the same name & the interface, They serve only for implementing their
correspondng interface ad they do nd inherit from other implementations. They
may contain private member variables and functions; these ae not exposed to the
outside world bythe arrespondnginterface

An interfacemay be marked as being "creaable". Then it may be used in "new"
operations to spedfy the type of the objedsto be aeded. It isthe job d the Lavarun
time system to find an implementation o a given interface as well as implementa-
tions of al dired andindired base interfaces. On credion, a Lava objed is compaosed
from all these inherited interfaces and the associated implementations. Lava suppats
multi ple inheritance with "virtual base dasses’, as you would say in C++: If alLava

interface A inherits the same base interface B several times on severa inheritance
paths then an oljed of type A contains only one base objed of type B. SeeFig.1 (last
page) for an example involving interfaces, implementations, and multi ple inheritance

3.4 Distinction Between State and Value Objeds

One of the most unwsua (and experimental) feaures of Lava is its distinction ke
tween "value objeds’, that become immutable dter initi ali zation/customization, and
"state objeds’, that may be changed again and again. This requires some alditional
consideration to be invested by the programmers but we believe that this extra aost
will pay off later (during program maintenance) by increased comprehensibility of the
program.

Itisjust abig help in understanding the purpose and role of a variable if we know
that it does not represent a variable state that can be changed again and again, but just
a oomplex value (therefore "value objed™) that is constructed and completed orce and
that is never changed theredter during the run time of the gplicaion. Moreover, as
we have pointed ou alrealy in sedion 33, point 3, this distinction enables additional,
valuable semantic chedks.

3.5 DataFlow, Globals, Single-Assgnment

Lava prevents all kinds of implicit data flow through dobal variables or static mem-
ber variables by relinquishing these concepts and by alowing oy explicit data flow
through @rameter passng and locd variables.

Single-assgnment, applied to parameters and locd variables occurring in the
same exec makes sure that those variables canna be reused in dfferent meanings
within the same branch of this exec (Seesedion 21 for an explanation d the “exec”
notion.) Single-assgnment has far reading conseguences. It enforces, for instance, a
more standardized and regular way to ded with branching constructs:

set b € true;

ifo..
then set b € false // error: b has already been set
#if
violates the single-assgnment rule and would have to be replaced by
if ...
then set b € false //

else set b € true Il OK
#if

Single-assgnment excludes also traditional sequential loops that forward information
from one pass of the loop to the next by explicitly asdgning rew values to certain
variables in every pass In Lava, the role of traditional loop constructs is taken over
by logicd quantifiers "exists' and "foread" running ower finite sets of objeds, and by
reaursive functions. Existential and uriversal quantifiers replace seach loops and
exhaustive loops, respedively, whose passes are independent of ead ather and could
be exeauted concurrently therefore. All other kinds of repetitive dgorithms are ex-
presed byreaursive functions.

This gift of perspedive avay from multiple adggnment and loop constructs to-
wards a more mathematicd view of algorithms, based on exclusive logicd distinc-
tions, quantifiers and reaursive functions will certainly require some releaning. But it
promises to lead to smaller, more self-contained functions eventually and it will
grealy fadlitate program comprehension if programmers lean to think in these
terms.

Absence of global variables and single-asignment cause the data flow to be
strictly direded from top to batom within exeautable mde: The data flow of pro-
gramsis clarified in a smilar way as the cntrol flow has been clarified by abandon-
ing"goto".

4 Design Patterns and Genericity

Lava dlows dedarations to be grouped in "padkages’ similar to Java packages. Lava
packages are mntained completely in ore Lava file and are just a spedal type of
nodes in the Lava dedaration tree Padkages and interfaces may be endowed with
type parameters, cdled "virtual types'. These may be overridden in derived interfaces
and packages by asggning more derived types to them. The types of member vari-
ables and method rameters may be such virtua types. Based on this virtual type
nation, Lava dlows you to define groups of mutually reaursive interfaces with "co-
variant spedalization® of (virtual) member and method parameter types. This is a
very natural way to suppat reusable "design petterns' in the sense of [2] (cf. also [6],
[12], [13]) and a powerful dternative to the traditional parametric types/templates of
C++ [11], Eiffel [9], and the Java genericity extension GJ [5]. Ancther highly desir-
able ansequence of using petternsis that "covariant spedali zaion" renders the ubig-
uitous "type cats' of C++ and Java programs superfluous.

The extension d the derivation and (multiple) inheritance notions from interfaces
to patterns/padkages, combined with dedaration resting, is perhaps also an appropri-
ate way to describe the derivation / descendence relations between the individual
patterns of a "pattern language” [6] or at least certain aspeds thereof.

5 Conclusion

Quite anumber of unusual fedures establish the novel and experimental nature of
Lava. The use of structure ditors instead of text editors relieves the programmers
from syntax learning and prevents g/ntax errors from the beginning. The synoptic
treerepresentation o nested dedarations with its coll apse/expand, drag-and-drop, go-
to-dedaration, override suppat and aher functions will gredly fadlitate program
(re)structuring and program comprehension. The distinction between immutable
value and variable state objeds allows us to express more semantics in Lava. The
more stringent objed initialization/customization dscipline, the single-asignment
concept, the absence of global variables and traditional sequential loop constructs will
clarify the data flow and enforce more standardized program structures based on
small reaursive functions. Some of these fedures enable more detailed semantic
chedks and ealy error reporting. Advanced suppat of genericity by "virtual types'
opens a new dimension d program structuring by reusable design petterns. It avoids
ugly "type cats' and enables a higher amourt of static type dedking.

Although no treged in this paper: The purely dedarative treament of
concurrency, synchronizaion and transadions and the seamlesdy integrated suppat
for database queries, based onlogicd conjunctions, quantifiers and a "seled" expres-
sion (as a subgtitute for "embedded SQL") promise to gredly reduce the leaning
effort of database programmers and to remove the root of many paentia errors.

References

1. Caprile, B., Tonella, P.: Restructuring Program Identifier Names. Procealings |IEEE
ICSM'00, 2000 ISBN 0-769507530

2. Gamma, E., Helm, R., Johrson, R., and Vlisddes, J.: Design Patterns: Elements of Reusable
Objed-Oriented Software. Addison-Wesley, 1995 ISBN 0201633612

3. Godling, J., Joy, B., and Stede, G., Bracha, G.: The Java Language Spedficaion. Addison-
Wesley, 200Q 896 ages, ISBN 0201310082

4, Gunther, Klaus D.: Lava— Programmieren im Lego-Stil. Procealings Componrent Devel op-

ers and Users Forum 2001

. GJ: http://www.cs.bell -labs.com/who/wadl er/pizzdgj/ Documents/index.html

. Hill side Group, Pattern Home Page: http://hill side.net/patterns/

. Java http://www.javasoft.com

. Lava: http://www.darmstadt.gmd.de/~guenthk/L ava/

9. Meyer, B.: Eiffel: The Language. PrenticeHall Europe, 1992 ISBN 0132479257

10.PITAC Report to the American Government: http://www.cdc.goviadreport/

11.Stroustrup, B.: The C++ Programming Language, Spedal Edition. Addison-Wesley (2000,
ISBN 020170073

12.Thorup, K.K., Torgersen, M.: Unifying Genericity (Combining the Benefits of Virtua
Types and Parameterized Classs). Procealings ECOOP' 99, 186204

13.Tondla, P., Antoniol, G.: Objed-Oriented Design Pattern Inference Procealings |IEEE
ICSM'99, 1999 ISBN 0-769500161

0o ~NO O

T

MIABPIIISA0 pUe ‘Uoie Jepap Yaxaene T B4

14 ssaud “djay Jo4

Zauny .+

F)
Launy F
A _m_
Les (3]

L¥
joysdeus h_.
senb3y ,__.
sgEeg f

s

o

pelqn -2
sareay [
o [

L [
v o

sadd) [Enup, W_ =

|wnug g

1abaqu |

Bugs - L (O]

syhdu) -

Lanouny fuo-peay =: [aury h_. -
sanesy [F-E

Ly jo uogequswade) I-E

uaEIAWnUg spuspa ‘aepa) = (wnug Rl

oIy ISZENU nejE g = g

uoaung =:zauny 4
sanea W_ =
Bumng =z [

Lanouny duo-peay =: |Uny h_.
Jafisu) © zIes _m_
Bug : Les [

FaINEE 4 W_m

aaepam = 1y B0

oax3 -w

Iopeu) = |Boud R

SUDNRIE[3]

azeToapH
ItH#

s
asTa

Yo jrasy

asTa
<WI3S >
t¢Id¥ax aseo
TepreysorTd worsseTrdrs <adxar YyojTas
uwayy
<S>
FI=T2
cadxax + <adxaz = <Ienr 135
uayy
TenToyRorTd JUSWS IP3F WIS
FT
flcadxaxf«adxar ‘<adxaz) Toung 18 TLED

{12795k ‘uboy) TOUDZ: 78 TTRD
DiTWIAT ‘E2T Y, A0E,) TOUNT TE TLed
JUBMIOD B ST STHL

fpuEaT S T3 198

{17 MAU & FE 188

(1Y MAU 3 TE 138
op|

T2 Tumuz

fTu ashaqul

{1 Autaas

ige ‘1w IY
areToap

irini
ik
ihar=] v
dler =)
HoEd]|E
Lgens
E=T e

Thoad I01ETITUT

E =i

= feaeie s 1] [

oax] o boud - .__uutmEmﬂou

Laean)
Slsixa
auejaap

B kw0

e T

S
1| & 41§

£ =€ == =

o [[Eee inesn =]

=gvalfed2||matux iR um o

&.QGGGG@_NN_M_N.M._@@_@_Em_a.ﬁ@ﬂ%_MEﬂﬂ m_—
A wopuR pasul waR 3T a3

BAR| NP JIEWS - JJRART

