
Component-Oriented Languages: Messages
vs. Methods, Modules vs. Types

Peter H. Fröhlich (phf@acm.org), Department of Information and Com-

puter Science, University of California, Irvine, CA 92697-3425, USA

Abstract Programming languages should support the
paradigm of component-oriented software development.
Component-oriented programming languages must ex-
plicitly distinguish messages vs. methods and modules vs.
types. Most object-oriented languages unify these con-
cepts and are therefore unsuitable for component-oriented
programming.

Position Statement Software development paradigms
influence programming language design and vice versa
[1]. For example, structured, modular, and object-oriented
programming are often associated with Pascal, Ada, and
Smalltalk respectively. Although these associations are
not essential, languages that directly support the ba-
sic concepts of a paradigm usually lead to more effi-
cient and more maintainable solutions. However, current
approaches to component-oriented programming (COP)
[2, 3, 4] are largely based on object-oriented design pat-
terns with very little language support. This situation is
comparable to practicing object-oriented programming in
Pascal. We believe that history will repeat itself: Draw-
backs of existing languages will enourage language de-
signers to support concepts essential to COP, leading to
component-oriented programming languages (COPLs).

Three concepts essential to COP are polymorphism,
modularity, and independent extensibility [5]. Polymor-
phism allows components to be dynamically substituted
for each other. Modularity isolates components from their
environment except for explicit dependencies. Indepen-
dent extensibility means that independently developed ex-
tensions can be combined without leading to errors or con-
flicts in the component model or language.1

Let us clarify some additional terminology: A message
is an abstract operation, while a method is a concrete op-
eration. Messages specify what effect is achieved, while
methods specify how an effect is achieved. In COP, a set
of messages is a component interface while a set of meth-
ods is a component implementation. A module is a syn-
tactic grouping of declarations describing the static struc-
ture of a software system [5], while a type serves a similar
purpose regarding a system’s dynamic structure [6]. In
contrast to modules, types are usually constructed out of
more primitive types.

A language supporting polymorphism and modularity
is easily defined. For example, we could add a module
construct to Java.2 However, this language does not sup-

1Application-level errors or conflicts can not be ruled out completely.
2Java’s package construct is not closed and thus unsuitable [5].

port independent extensibility. If we model interfaces us-
ing the interface construct and implementations us-
ing the class construct, subtle conflicts can occur when
a single implementation requires multiple interfaces (see
Figure 1). Since messages have a unique identity only
within a type, messages with identical identifiers (id)
loose their identity in the combined type. If the signatures
(sig) of two such messages can not be disambiguated, a
syntactic conflict occurs. If their signatures are identical,
it may not be possible to write a method conformant to
both messages, causing a semantic conflict.

sig(a) �= sig(b) sig(a) = sig(b)
id(a) �= id(b) No conflict No conflict
id(a) = id(b) Syntactic conflict Semantic conflict

Figure 1: Conflicts Between Messages

To avoid these conflicts, COPLs must explicitly distin-
guish messages vs. methods and modules vs. types [7].
In particular, messages must have unique identities within
modules to retain their identities across all interfaces in
which they participate. Methods, however, must remain
subordinate to types for polymorphism to work as re-
quired. Only two quadrants of the design space illustrated
in Figure 2 have been explored, but both are unsuitable for
COP.

Message ∈ Type Message ∈ Module
Method ∈ Type Object-Oriented Component-Oriented
Method ∈ Module Useless? Modular

Figure 2: Language Design Space

Using separate language constructs for messages, meth-
ods, modules, and types seems to be the simplest approach
to design a COPL. We are currently developing an experi-
mental programming language—code-named Lagoona—
based on the insights described here.

References
1. C. Ghezzi and M. Jazayeri: Programming Language Concepts.

2nd edition, Wiley & Sons, New York, NY, 1987.

2. Microsoft Corporation: The Component Object Model 0.9. July
1995.

3. Sun Microsystems: The JavaBeans Specification 1.01. July 1997.

4. Object ManagementGroup: The Common Object Request Broker:
Architecture and Specification 2.3.1. October 1999.

5. C. Szyperski: Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, Harlow, England, 1998.

6. L. Cardelli: Type Systems. The Computer Science and Engineer-
ing Handbook, CRC Press, Chapter 103, 1997.

7. P. H. Fröhlich and M. Franz: Component-Oriented Programming
in Object-Oriented Languages. Technical Report 99-49, Depart-
ment of Information and Computer Science, University of Cali-
fornia, Irvine, CA, October 1999. Revised December 1999.


