------------------------------------------------------------------------------ --- Definition of data types to represent interfaces of Curry modules. --- --- These definitions are adapted from the Haskell definition contained --- in the implementation of the Curry front end, see --- ------------------------------------------------------------------------------ module CurryInterface.Types where import Data.Function (on) --- Interface declarations are restricted to type declarations and signatures. --- Note that an interface function declaration additionaly contains the --- function arity (= number of parameters) in order to generate --- correct FlatCurry function applications. data Interface = Interface ModuleIdent [IImportDecl] [IDecl] deriving (Eq, Read, Show) --- Interface import declaration data IImportDecl = IImportDecl ModuleIdent deriving (Eq, Read, Show) --- Arity of a function type Arity = Int --- Operator precedence type Precedence = Int -- |Fixity of operators data Infix = InfixL -- ^ left-associative | InfixR -- ^ right-associative | Infix -- ^ no associativity deriving (Eq, Read, Show) --- Interface declaration data IDecl = IInfixDecl Infix Precedence QualIdent | HidingDataDecl QualIdent (Maybe KindExpr) [Ident] | IDataDecl QualIdent (Maybe KindExpr) [Ident] [ConstrDecl] [Ident] | INewtypeDecl QualIdent (Maybe KindExpr) [Ident] NewConstrDecl [Ident] | ITypeDecl QualIdent (Maybe KindExpr) [Ident] TypeExpr | IFunctionDecl QualIdent (Maybe Ident) Arity QualTypeExpr | HidingClassDecl Context QualIdent (Maybe KindExpr) Ident | IClassDecl Context QualIdent (Maybe KindExpr) Ident [IMethodDecl] [Ident] | IInstanceDecl Context QualIdent InstanceType [IMethodImpl] (Maybe ModuleIdent) deriving (Eq, Read, Show) --- Class methods data IMethodDecl = IMethodDecl Ident (Maybe Arity) QualTypeExpr deriving (Eq, Read, Show) --- Class method implementations type IMethodImpl = (Ident, Arity) --- Kind expressions data KindExpr = Star | ArrowKind KindExpr KindExpr deriving (Eq, Read, Show) -- ... and much more ----------------------------------------------------------------------- -- Token types -- |Simple identifier {- data Ident = Ident { idName :: String , idUnique :: Int } deriving (Read, Show) instance Eq Ident where Ident m i == Ident n j = (m, i) == (n, j) instance Ord Ident where Ident m i `compare` Ident n j = (m, i) `compare` (n, j) -} data Ident = Ident { idName :: String } deriving (Read, Show) instance Eq Ident where Ident m == Ident n = m == n instance Ord Ident where Ident m `compare` Ident n = m `compare` n -- | Module identifier data ModuleIdent = ModuleIdent { midQualifiers :: [String] } deriving (Read, Show) instance Eq ModuleIdent where (==) = (==) `on` midQualifiers instance Ord ModuleIdent where compare = compare `on` midQualifiers -- |Qualified identifier data QualIdent = QualIdent { qidModule :: Maybe ModuleIdent , qidIdent :: Ident } deriving (Read, Show) instance Eq QualIdent where QualIdent m i == QualIdent n j = (m, i) == (n, j) instance Ord QualIdent where QualIdent m i `compare` QualIdent n j = (m, i) `compare` (n, j) -- |Constructor declaration for algebraic data types data ConstrDecl = ConstrDecl Ident [TypeExpr] | ConOpDecl TypeExpr Ident TypeExpr | RecordDecl Ident [FieldDecl] deriving (Eq, Read, Show) -- |Constructor declaration for renaming types (newtypes) data NewConstrDecl = NewConstrDecl Ident TypeExpr | NewRecordDecl Ident (Ident, TypeExpr) deriving (Eq, Read, Show) -- |Declaration for labelled fields data FieldDecl = FieldDecl [Ident] TypeExpr deriving (Eq, Read, Show) -- |Type expressions data TypeExpr = ConstructorType QualIdent | ApplyType TypeExpr TypeExpr | VariableType Ident | TupleType [TypeExpr] | ListType [TypeExpr] | ArrowType TypeExpr TypeExpr | ParenType TypeExpr | ForallType [Ident] TypeExpr deriving (Eq, Read, Show) -- |Qualified type expressions data QualTypeExpr = QualTypeExpr Context TypeExpr deriving (Eq, Read, Show) type Context = [Constraint] data Constraint = Constraint QualIdent TypeExpr deriving (Eq, Read, Show) type InstanceType = TypeExpr -----------------------------------------------------------------------