------------------------------------------------------------------------------ --- This module provides an abstract representation of a variant --- of the SMT-LIB language appropriate for checking Curry programs. --- In particular, polymorphic function declarations are supported. --- --- It might be later replaced by an extended version of the --- SMT-LIB language specified in the package `smtlib`. --- --- @author Michael Hanus --- @version September 2019 ------------------------------------------------------------------------------ module ESMT where import List ( (\\), intercalate, isPrefixOf, union ) import Data.FiniteMap import Text.Pretty ------------------------------------------------------------------------------ --- An SMT-LIB script consists of a list of commands. data SMTLib = SMTLib [Command] deriving (Eq, Show) type SVar = Int -- variables type Ident = String -- identifiers (e.g., functions) --- Sorts data Sort = SComb Ident [Sort] deriving (Eq, Show) -- Shows a sort as a string. showSort :: Sort -> String showSort (SComb s ss) = s ++ intercalate "_" (map showSort ss) --- Does the sort represent a type parameter (`TVar i`)? isTypeParameter :: Sort -> Bool isTypeParameter (SComb s ss) = null ss && "TVar" `isPrefixOf` s && length s > 4 ---------------------------------------------------------------------------- --- Terms --- A literal is a natural number, float, or string. data TLiteral = TInt Int | TFloat Float | TString String deriving (Eq, Show) --- An identifier possibly with a sort attached. data QIdent = Id Ident | As Ident Sort deriving (Eq, Show) --- The identifier of a possibly sorted identifier. qidName :: QIdent -> Ident qidName (Id n ) = n qidName (As n _) = n --- Sorted variables used in quantifiers. data SortedVar = SV SVar Sort deriving (Eq, Show) --data Pattern = PComb SVar [SVar] -- deriving (Eq, Show) --- Terms occurring in formulas data Term = TConst TLiteral | TSVar SVar | TComb QIdent [Term] | Let [(SVar, Term)] Term | Forall [SortedVar] Term | Exists [SortedVar] Term --| Match Term [(Pattern, Term)] --| Annot Term [Attribute] deriving (Eq, Show) -- Smart constructors: --- Combined term with string identifier. tComb :: Ident -> [Term] -> Term tComb f ts = TComb (Id f) ts --- Conjunction tConj :: [Term] -> Term tConj = tComb "and" --- Disjunction tDisj :: [Term] -> Term tDisj = tComb "or" --- Negation tNot :: Term -> Term tNot t = tComb "not" [t] --- A Boolean true. tTrue :: Term tTrue = tComb "true" [] --- A Boolean false. tFalse :: Term tFalse = tComb "false" [] --- Equality between two terms. tEqu :: Term -> Term -> Term tEqu t1 t2 = tComb "=" [t1, t2] --- Equality between a variable and a term. tEquVar :: SVar -> Term -> Term tEquVar v t = tEqu (TSVar v) t --- A constant with a sort declaration. sortedConst :: Ident -> Sort -> Term sortedConst c s = TComb (As c s) [] ---------------------------------------------------------------------------- --- Datatype declaration consisting of type variables and constructor decls. data DTDecl = DT [Ident] [DTCons] -- polymorphic type deriving (Eq, Show) data DTCons = DCons Ident [(Ident,Sort)] deriving (Eq, Show) --- The signature of a function declaration. data FunSig = FunSig Ident [Sort] Sort deriving (Eq, Show) --- The signature and arguments of a function declaration. data FunDec = FunDec Ident [SortedVar] Sort deriving (Eq, Show) --- A definition of a polymorphic, possibly non-deterministic, operation. --- The first component is a list of type paramters --- which can be used in the type signature and the term. --- The term in the third argument is the axiomatization of the function --- definition. Thus, it contains all quantifiers and the equation --- `(= (f x1...xn) rhs-term)` so that it can also be used to specify, --- by exploiting disjunctions, the meaning of non-deterministic operations. type FunSigTerm = ([Ident], FunSig, Term) --- Commands in SMT script. --- The command `DefineSigsRec` is new. It is similar to `DefineFunsRec`, --- but the associated term is the axiomatization of the function --- definition. Thus, it contains all quantifiers and the equation --- `(= (f x1...xn) rhs-term)` so that it can also be used to specify, --- by exploiting disjunctions, the meaning of non-deterministic functions. --- Moreover, it supports parametric polymoprhism by providing a list --- of type paramters which can be used in the type signature and term. --- Such polymorphic declarations are replaced by type-instantiated --- monomorphic definitions before printing an SMT script. data Command = Assert Term | CheckSat | Comment String | DeclareVar SortedVar | DeclareDatatypes [(Ident, Int, DTDecl)] -- name/arity/decls | DeclareFun Ident [Sort] Sort | DeclareSort Ident Int | DefineFunsRec [(FunDec, Term)] | DefineSigsRec [FunSigTerm] | EmptyLine deriving (Eq, Show) -- Smart constructors: --- Assert a simplified formula. sAssert :: Term -> Command sAssert = Assert . simpTerm --- Examples: {- listType = DeclareDatatypes [("List",1, DT ["T"] [ DCons "nil" [], DCons "cons" [("car", SComb "T" []), ("cdr", SComb "List" [SComb "T" []])]])] maybeType = DeclareDatatypes [("Maybe",1, DT ["T"] [ DCons "Nothing" [], DCons "Just" [("just", SComb "T" [])]])] pairType = DeclareDatatypes [("Pair",2, DT ["X", "Y"] [ DCons "mk-pair" [("first", SComb "X" []), ("second", SComb "Y" [])]])] -} --------------------------------------------------------------------------- -- All possibly sorted identifiers occurring in a SMT term. allQIdsOfTerm :: Term -> [QIdent] allQIdsOfTerm (TConst _) = [] allQIdsOfTerm (TSVar _) = [] allQIdsOfTerm (TComb f args) = foldr union [f] (map allQIdsOfTerm args) allQIdsOfTerm (Forall _ arg) = allQIdsOfTerm arg allQIdsOfTerm (Exists _ arg) = allQIdsOfTerm arg allQIdsOfTerm (Let bs e) = foldr union [] (map allQIdsOfTerm (e : map snd bs)) -- All possibly sorted identifiers occurring in a define-sig element. allQIdsOfSigs :: [FunSigTerm] -> [QIdent] allQIdsOfSigs = foldr union [] . map allQIdsOfSig where allQIdsOfSig (_,_,t) = allQIdsOfTerm t -- TODO: should be extended to all commands but currently sufficient allQIdsOfAsserts :: [Command] -> [QIdent] allQIdsOfAsserts = foldr union [] . map allQIdsOfAssert allQIdsOfAssert :: Command -> [QIdent] allQIdsOfAssert cmd = case cmd of Assert t -> allQIdsOfTerm t _ -> [] --------------------------------------------------------------------------- --- All type parameters occurring in a sort. typeParamsOfSort :: Sort -> [Ident] typeParamsOfSort s@(SComb sn ss) = if isTypeParameter s then [sn] else foldr union [] (map typeParamsOfSort ss) --- All type parameters contained in a term. typeParamsOfTerm :: Term -> [Ident] typeParamsOfTerm (TConst _) = [] typeParamsOfTerm (TSVar _) = [] typeParamsOfTerm (TComb f args) = foldr union (typeParamsOfQId f) (map typeParamsOfTerm args) typeParamsOfTerm (Forall svs arg) = foldr union (typeParamsOfTerm arg) (map typeParamsOfSV svs) typeParamsOfTerm (Exists svs arg) = foldr union (typeParamsOfTerm arg) (map typeParamsOfSV svs) typeParamsOfTerm (Let bs e) = foldr union [] (map typeParamsOfTerm (e : map snd bs)) typeParamsOfQId :: QIdent -> [Ident] typeParamsOfQId (Id _ ) = [] typeParamsOfQId (As _ s) = typeParamsOfSort s typeParamsOfSV :: SortedVar -> [Ident] typeParamsOfSV (SV _ s) = typeParamsOfSort s typeParamsOfFunSig :: FunSig -> [Ident] typeParamsOfFunSig (FunSig _ ss s) = foldr union [] (map typeParamsOfSort (ss++[s])) --- A type paramter substitution. type TPSubst = FM Ident Sort --- The empty substitution emptyTPSubst :: TPSubst emptyTPSubst = emptyFM (<) ---------------------------------------------------------------------------- --- Compute sort matching, i.e., if `matchSort t1 t2 = s`, then `t2 = s(t1)`. matchSort :: Sort -> Sort -> Maybe TPSubst matchSort s1@(SComb sn1 ss1) s2@(SComb sn2 ss2) | isTypeParameter s1 = Just $ if s1 == s2 then emptyTPSubst else addToFM emptyTPSubst (head (typeParamsOfSort s1)) s2 | otherwise = if sn1 == sn2 then matchSorts ss1 ss2 else Nothing matchSorts :: [Sort] -> [Sort] -> Maybe TPSubst matchSorts [] [] = Just emptyTPSubst matchSorts [] (_:_) = Nothing matchSorts (_:_) [] = Nothing matchSorts (t1:ts1) (t2:ts2) = do s <- matchSort t1 t2 t <- matchSorts (map (substSort s) ts1)(map (substSort s) ts2) return (plusFM s t) --- Applies a sort substitution to a sort. substSort :: TPSubst -> Sort -> Sort substSort sub (SComb sn ss) = maybe (SComb sn (map (substSort sub) ss)) id (lookupFM sub sn) --- Applies a sort substitution to a term. substTerm :: TPSubst -> Term -> Term substTerm sub term = case term of TConst _ -> term TSVar _ -> term TComb f args -> TComb (substQId sub f) (map (substTerm sub) args) Forall svs arg -> Forall (map (substSV sub) svs) (substTerm sub arg) Exists svs arg -> Forall (map (substSV sub) svs) (substTerm sub arg) Let bs e -> Let (map (\ (v,s) -> (v, substTerm sub s)) bs) (substTerm sub e) substQId :: TPSubst -> QIdent -> QIdent substQId _ qid@(Id _) = qid substQId sub (As n s) = As n (substSort sub s) substSV :: TPSubst -> SortedVar -> SortedVar substSV sub (SV v s) = SV v (substSort sub s) substFunSig :: TPSubst -> FunSig -> FunSig substFunSig sub (FunSig fn ss s) = FunSig fn (map (substSort sub) ss) (substSort sub s) substDefSig :: TPSubst -> FunSigTerm -> FunSigTerm substDefSig tsub (ps, fsig, term) = (ps \\ keysFM tsub, substFunSig tsub fsig, substTerm tsub term) -------------------------------------------------------------------------- -- Rename identifiers. rnmTerm :: (Ident -> Ident) -> Term -> Term rnmTerm rnm term = case term of TConst _ -> term TSVar _ -> term TComb f args -> TComb (rnmQId rnm f) (map (rnmTerm rnm) args) Forall svs arg -> Forall svs (rnmTerm rnm arg) Exists svs arg -> Forall svs (rnmTerm rnm arg) Let bs e -> Let (map (\ (v,s) -> (v, rnmTerm rnm s)) bs) (rnmTerm rnm e) rnmQId :: (Ident -> Ident) -> QIdent -> QIdent rnmQId rnm (Id n) = Id (rnm n) rnmQId rnm (As n s) = As (rnm n) s rnmFunSig :: (Ident -> Ident) -> FunSig -> FunSig rnmFunSig rnm (FunSig fn ss s) = FunSig (rnm fn) ss s rnmDefSig :: (Ident -> Ident) -> ([Ident],FunSig,Term) -> ([Ident],FunSig,Term) rnmDefSig rnm (ps, fsig, term) = (ps, rnmFunSig rnm fsig, rnmTerm rnm term) -------------------------------------------------------------------------- -- A simplifier for terms: simpTerm :: Term -> Term simpTerm (TConst l) = TConst l simpTerm (TSVar v) = TSVar v simpTerm (Let bs t) = if null bs then t' else Let bs' t' where bs' = map (\ (v,tm) -> (v, simpTerm tm)) bs t' = simpTerm t simpTerm (Forall vs t) = if null vs then t' else Forall vs t' where t' = simpTerm t simpTerm (Exists vs t) = if null vs then t' else Exists vs t' where t' = simpTerm t simpTerm (TComb f ts) | qidName f == "/=" && length ts == 2 = simpTerm (TComb (Id "not") [TComb (Id "=") ts]) | f == Id "apply" && not (null ts') = case head ts' of TComb s' ts0 -> TComb s' (ts0 ++ tail ts') _ -> fts | f == Id "not" = case ts' of [TComb s' [ts0]] -> if s' == f then ts0 else fts _ -> fts | f == Id "and" = case filter (/= tTrue) ts' of [] -> tTrue cjs -> if tFalse `elem` cjs then tFalse else TComb f (concatMap joinSame cjs) | f == Id "or" = case filter (/= tFalse) ts' of [] -> tFalse djs -> if tTrue `elem` djs then tTrue else TComb f (concatMap joinSame djs) | otherwise = fts where ts' = map simpTerm ts fts = TComb f ts' joinSame arg = case arg of TComb f' args | f==f' -> args _ -> [arg] -------------------------------------------------------------------------- -- Remove As-identifiers if they are functions (for better readability): reduceAsInTerm :: Term -> Term reduceAsInTerm (TConst l) = TConst l reduceAsInTerm (TSVar v) = TSVar v reduceAsInTerm (Let bs t) = Let (map (\ (v,tm) -> (v, reduceAsInTerm tm)) bs) (reduceAsInTerm t) reduceAsInTerm (Forall vs t) = Forall vs (reduceAsInTerm t) reduceAsInTerm (Exists vs t) = Exists vs (reduceAsInTerm t) reduceAsInTerm (TComb f ts) = TComb (simpAs f) (map reduceAsInTerm ts) where simpAs qid = case qid of As n (SComb s _) | s == "Func" -> Id n _ -> qid -------------------------------------------------------------------------- -- Get all sort identifiers occurring in a sort. sortIdsOfSort :: Sort -> [Ident] sortIdsOfSort (SComb s ss) = s : concatMap sortIdsOfSort ss -- Get all sorts occurring in a term. sortsOfTerm :: Term -> [Sort] sortsOfTerm (TConst _) = [] sortsOfTerm (TSVar _) = [] sortsOfTerm (Let bs t) = concatMap (sortsOfTerm . snd) bs ++ sortsOfTerm t sortsOfTerm (Forall vs t) = map sortOfSortedVar vs ++ sortsOfTerm t sortsOfTerm (Exists vs t) = map sortOfSortedVar vs ++ sortsOfTerm t sortsOfTerm (TComb f ts) = sortsOfQIdent f ++ concatMap sortsOfTerm ts where sortsOfQIdent (Id _) = [] sortsOfQIdent (As _ s) = [s] sortOfSortedVar :: SortedVar -> Sort sortOfSortedVar (SV _ s) = s -------------------------------------------------------------------------- -- Remove parametric polymorphism (supported by `DefineSigsRec`) -- in an SMT script. -- First, for all QIdents occurring in assertions, their type-instantiated -- signatures are added. Then, for all QIdents occurring in these added -- operations, their type-instantiated signatures are added and so forth, -- until nothing needs to be added. Finally, the type-instantiated signatures -- are renamed. unpoly :: [Command] -> [Command] unpoly commands = let allsigs = map sigNameSort (allSigs commands) in map (unpolyCmd allsigs) . reverse . addSigs [] . reverse $ commands where addSigs _ [] = [] addSigs qids (cmd:cmds) = case cmd of DefineSigsRec fts -> let (qids1,ftss) = addAllInstancesOfSigs (union (allQIdsOfSigs fts) qids) fts in DefineSigsRec ftss : addSigs qids1 cmds _ -> cmd : addSigs (union (allQIdsOfAssert cmd) qids) cmds -- remove remaining polymorphic signatures and rename qualified names -- according to their sorts unpolyCmd sigs cmd = case cmd of DefineSigsRec fts -> DefineSigsRec $ map rnmTermInSig (filter (\ (ps,_,_) -> null ps) fts) Assert term -> Assert (rnmQIdWithTInstTerm sigs term) _ -> cmd where rnmTermInSig (ps,sig,term) = (ps, sig, rnmQIdWithTInstTerm sigs term) -- Transforms a list of signatures into all its instances required by -- sorted identifiers (second argument) and also required by sorted -- identifiers in the added instances. Returns also the list of -- remaining identifiers. addAllInstancesOfSigs :: [QIdent] -> [FunSigTerm] -> ([QIdent], [FunSigTerm]) addAllInstancesOfSigs allqids = addAllInsts allqids where addAllInsts qids fts = let (qids1,fts1) = addInstancesOfSigs qids fts in if null fts1 then (qids1,fts) else let (qids2,fts2) = addAllInsts (union qids1 (allQIdsOfSigs fts1 \\ allqids)) (fts ++ fts1) in (qids2, fts2) -- Adds to given (polymorphic) define-sig elements all its type instances -- required by qualified identifiers occurring in the first argument -- provided that it does not already occur in the sig elements. -- The list of unused qualified identifiers is also returned. addInstancesOfSigs :: [QIdent] -> [FunSigTerm] -> ([QIdent], [FunSigTerm]) addInstancesOfSigs qids allsigs = addInstsOfSigs qids allsigs where addInstsOfSigs qids0 [] = (qids0,[]) addInstsOfSigs qids0 (fts:ftss) = let (qids1,fts1) = addInstancesOfSig qids0 allsigs fts (qids2,fts2) = addInstsOfSigs qids1 ftss in (qids2, fts1 ++ fts2) -- Adds to a given (polymorphic) define-sig element all its type instances -- required by qualified identifiers occurring in the first argument -- provided that it does not already occur in the sig elements -- contained in the second argument. -- The list of unused qualified identifiers is also returned. addInstancesOfSig :: [QIdent] -> [FunSigTerm] -> FunSigTerm -> ([QIdent], [FunSigTerm]) addInstancesOfSig allqids allsigs fts@(ps, (FunSig fn ss rs), _) = addSigInsts allqids where addSigInsts [] = ([],[]) addSigInsts (qid:qids) = let (qids1,sigs1) = addSigInsts qids in case qid of As n s | n==fn -> (qids1, sigInstForType s ++ sigs1) _ -> (qid : qids1, sigs1) sigInstForType s = maybe [] (\tsub -> let rnm = toTInstName fn ps tsub in if rnm fn `elem` map nameOfSig allsigs then [] else [(rnmDefSig rnm (substDefSig tsub fts))]) (matchSort (sigTypeAsSort ss rs) s) -------------------------------------------------------------------------- -- Rename a sorted name w.r.t. its type instance of the polymorphic function. -- For instance, -- (As "id" (SComb "Func" [SComb "Int" [], SComb "Int" []])) -- will be renamed to -- (As "id_Int" (SComb "Func" [SComb "Int" [], SComb "Int" []])) rnmQIdWithTInst :: [(Ident, ([Ident],Sort))] -> QIdent -> QIdent rnmQIdWithTInst _ (Id n) = Id n rnmQIdWithTInst sigs qid@(As n s) = maybe qid (\ (ps,psort) -> maybe qid (\tsub -> As (addTInstName ps tsub n) s) (matchSort psort s)) (lookup n sigs) -- Rename all sorted names occurring in a term w.r.t. its type instance -- of the polymorphic function. rnmQIdWithTInstTerm :: [(Ident, ([Ident],Sort))] -> Term -> Term rnmQIdWithTInstTerm sigs term = case term of TConst _ -> term TSVar _ -> term TComb f args -> TComb (rnmQIdWithTInst sigs f) (map (rnmQIdWithTInstTerm sigs) args) Forall svs arg -> Forall svs (rnmQIdWithTInstTerm sigs arg) Exists svs arg -> Forall svs (rnmQIdWithTInstTerm sigs arg) Let bs e -> Let (map (\ (v,s) -> (v, rnmQIdWithTInstTerm sigs s)) bs) (rnmQIdWithTInstTerm sigs e) -- Renaming operation which changes the name of a given (polymorphic) -- function w.r.t. a list of type parameters and a substitution. toTInstName :: Ident -> [Ident] -> TPSubst -> Ident -> Ident toTInstName fn ps tsub n | fn == n = addTInstName ps tsub n | otherwise = n -- Add a sort index to a name of a (polymorphic) function w.r.t. -- a list of type parameters and a type substitution. addTInstName :: [Ident] -> TPSubst -> Ident -> Ident addTInstName tps tsub n = n ++ concatMap (\p -> maybe "" (('_':) . showSort) (lookupFM tsub p)) tps -- All signatures in a list of commands. allSigs :: [Command] -> [FunSigTerm] allSigs = concatMap sigOfCmd where sigOfCmd cmd = case cmd of DefineSigsRec fts -> fts _ -> [] -- The name of a signature. nameOfSig :: FunSigTerm -> Ident nameOfSig (_, FunSig n _ _, _) = n -- The name and sort of a signature. sigNameSort :: FunSigTerm -> (Ident, ([Ident],Sort)) sigNameSort (ps, FunSig n ss s, _) = (n, (ps, sigTypeAsSort ss s)) sigTypeAsSort :: [Sort] -> Sort -> Sort sigTypeAsSort [] s = s sigTypeAsSort (t:ts) s = SComb "Func" [t, sigTypeAsSort ts s] -------------------------------------------------------------------------- -- Pretty printing: --- Show an SMT-LIB script with a newline after transforming polymorphic --- functions into type-instanteded functions. showSMT :: [Command] -> String showSMT cmds = pPrint (pretty (SMTLib (unpoly cmds))) ++ "\n" --- Show an SMT-LIB script with a newline. showSMTRaw :: [Command] -> String showSMTRaw cmds = pPrint (pretty (SMTLib cmds)) ++ "\n" instance Pretty SMTLib where pretty (SMTLib cmds) = vsep (map pretty cmds) instance Pretty Sort where pretty (SComb i ss) = parensIf (not $ null ss) $ text i <+> (hsep (map pretty ss)) instance Pretty TLiteral where pretty (TInt n) = int n pretty (TFloat f) = float f pretty (TString s) = text s instance Pretty QIdent where pretty (Id i ) = text i pretty (As i s) = parent [text "as", text i, pretty s] instance Pretty SortedVar where pretty (SV v s) = parent [prettyVar v, pretty s] instance Pretty Term where pretty (TConst c) = pretty c pretty (TSVar v) = prettyVar v pretty (TComb qi ts) = parensIf (not $ null ts) $ pretty qi <+> (hsep (map pretty ts)) pretty (Let bs t) = parent [text "let", parent (map ppBind bs), pretty t] where ppBind (v, t') = parent [prettyVar v, pretty t'] pretty (Forall svs t) = parent [ text "forall" , parent (map pretty svs) , pretty t ] pretty (Exists svs t) = parent [ text "exists" , parent (map pretty svs) , pretty t ] instance Pretty DTDecl where pretty (DT tys cs) = if null tys then parent (map pretty cs) else parent [ text "par" , parent (map text tys) , parent (map pretty cs) ] instance Pretty DTCons where pretty (DCons sym sels) = parent [text sym, (hsep (map prettySel sels))] where prettySel (n,s) = parent [text n, pretty s] instance Pretty FunSig where pretty (FunSig fn ss s) = parent (ppCmd (DeclareFun fn ss s)) instance Pretty FunDec where pretty (FunDec fn svs s) = parent [ text fn, parent (map pretty svs) , pretty s ] instance Pretty Command where pretty cmd = case cmd of Comment cmt -> semi <+> text cmt EmptyLine -> text "" DefineSigsRec fts -> vsep $ map (pretty . (\ (_,t,_) -> t)) fts ++ map ppSigBody fts _ -> parent $ ppCmd cmd ppSigBody :: ([Ident],FunSig,Term) -> Doc ppSigBody (_, FunSig fn _ _, term) = vsep $ map pretty [ EmptyLine, Comment $ "Axiomatization of function '" ++ fn ++ "'" , sAssert term ] --- Pretty printing of SMT-LIB commands. ppCmd :: Command -> [Doc] ppCmd cmd = case cmd of Assert t -> [text "assert", pretty (reduceAsInTerm t)] -- for nicer printing CheckSat -> [text "check-sat"] DeclareVar (SV v s) -> [text "declare-const", prettyVar v, pretty s] DeclareDatatypes sds -> -- use old SMT syntax: if length sds /= 1 then error "Datatype declaration with more than one type!" else let (tc, _, DT tvs cs) = head sds in [ text "declare-datatypes" , parent (map text tvs) , parent [parent (text tc : map pretty cs)] ] --DeclareDatatypes sds -> let (ss, ars, ds) = unzip3 sds in -- [ text "declare-datatypes" -- , parent (map (\ (s,a) -> parent [text s, int a]) -- (zip ss ars)) -- , parent (map pretty ds) -- ] DeclareFun fn ss s -> [ text "declare-fun" , text fn , parent (map pretty ss) , pretty s ] DefineFunsRec fts -> let (fs, ts) = unzip fts in [ text "define-funs-rec" , parent (map pretty fs) , parent (map pretty ts) ] DeclareSort sym n -> [text "declare-sort", text sym, int n] _ -> error $ "ppCmd: command '" ++ show cmd ++ "' not reachable!" prettyVar :: SVar -> Doc prettyVar v = text ('x' : show v) --- Pretty print the given documents separated with spaces and parenthesized parent :: [Doc] -> Doc parent = encloseSep lparen rparen space