------------------------------------------------------------------------------ --- Right-linearity analysis: --- check whether functions are defined by right-linear rules. --- --- @author Michael Hanus --- @version April 2013 ------------------------------------------------------------------------------ module Analysis.RightLinearity (rlinAnalysis,hasRightLinearRules,linearExpr,showRightLinear) where import Analysis.Types import FlatCurry.Types import Maybe import List ------------------------------------------------------------------------------ --- The right-linearity analysis is a global function dependency analysis. --- It assigns to a function a flag which is True if this function --- is right-linear, i.e., defined by right-linear rules and depend only on --- functions defined by right-linear rules. rlinAnalysis :: Analysis Bool rlinAnalysis = dependencyFuncAnalysis "RightLinear" True rlFunc --- An operation is right-linear if it is defined by right-linear rules --- and depends only on right-linear operations. rlFunc :: FuncDecl -> [(QName,Bool)] -> Bool rlFunc func calledFuncs = hasRightLinearRules func && all snd calledFuncs -- Show right-linearity information as a string. showRightLinear :: AOutFormat -> Bool -> String showRightLinear _ True = "right-linear" showRightLinear AText False = "not defined by right-linear rules" showRightLinear ANote False = "" ------------------------------------------------------------------------------ -- The right-linearity analysis can also be applied to individual functions. -- It returns True for a function if it is defined by right-linear rules. hasRightLinearRules :: FuncDecl -> Bool hasRightLinearRules (Func _ _ _ _ rule) = isRightLinearRule rule isRightLinearRule :: Rule -> Bool isRightLinearRule (Rule _ e) = linearExpr e isRightLinearRule (External _) = True -------------------------------------------------------------------------- -- Check an expression for linearity: linearExpr :: Expr -> Bool linearExpr e = maybe False (const True) (linearVariables e) -- Return list of variables in an expression, if it is linear, -- otherwise: Nothing linearVariables :: Expr -> Maybe [Int] linearVariables (Var i) = Just [i] linearVariables (Lit _) = Just [] linearVariables (Comb _ f es) | f==("Prelude","?") && length es == 2 -- treat "?" as Or: = linearVariables (Or (head es) (head (tail es))) | otherwise = mapMMaybe linearVariables es >>- \esvars -> let vars = concat esvars in if nub vars == vars then Just vars else Nothing linearVariables (Free vs e) = linearVariables e >>- \evars -> Just (evars \\ vs) linearVariables (Let bs e) = mapMMaybe linearVariables (map snd bs) >>- \bsvars -> linearVariables e >>- \evars -> let vars = concat (evars : bsvars) in if nub vars == vars then Just (vars \\ (map fst bs)) else Nothing linearVariables (Or e1 e2) = linearVariables e1 >>- \e1vars -> linearVariables e2 >>- \e2vars -> Just (union e1vars e2vars) linearVariables (Case _ e bs) = linearVariables e >>- \evars -> mapMMaybe linearVariables (map (\ (Branch _ be) -> be) bs) >>- \bsvars -> let vars = foldr union [] (map (\ (branch,bsv) -> bsv \\ patternVars branch) (zip bs bsvars)) ++ evars in if nub vars == vars then Just vars else Nothing where patternVars (Branch (Pattern _ vs) _) = vs patternVars (Branch (LPattern _) _) = [] linearVariables (Typed e _) = linearVariables e