
Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.1

Heuristic Search Over Program
Transformations
WFLP-2013
September 13, 2013

Claus Zinn
FB Informatik und Informationswissenschaft

Universität Konstanz
Email: claus.zinn@uni-konstanz.de

WWW: http://www.inf.uni-konstanz.de/~zinn
Funded by DFG, Ref. ZI 1322/2-1

http://www.inf.uni-konstanz.de/~zinn

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.2

Motivation

• application of LP techniques to tutoring

• students may adopt erroneous procedures
and misconceptions

• good human instructors can make thoughtful
analyses of their students’ work and in doing
so, discover patterns in errors made

• good human instructors use student error
patterns to gain more specific knowledge of
students’ understanding; this informs their
future instruction.

• goal: build program to replicate diagnostic
competence of teachers for typical errors, and
that can reconstruct learner’s erroneous
procedure from observation

• use program as part of an ITS for learners, but
also for teacher training

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.3

Typical Subtraction Errors

• either student has learnt incorrect procedure

• or he knows correct procedure, but cannot execute a step

• encounters impasse, e.g., how to borrow from zero?
• makes repair action, e.g., skip the borrowing step in this case.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.3

Typical Subtraction Errors

• either student has learnt incorrect procedure

• or he knows correct procedure, but cannot execute a step

• encounters impasse, e.g., how to borrow from zero?
• makes repair action, e.g., skip the borrowing step in this case.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.4

Overview

Prior Work

• encoded expert knowledge as Prolog program(s)

• developed variant of algorithmic debugging to localise learner’s bug wrt.
expert procedure (KI-11)

• perturbated expert program to reproduce learner’s erroneous procedure
(LOPSTR-12)

• interative process interleaving algorithmic debugging with program
transformation

• but transformation costly, vast search space conquered (mostly) in
blind manner

Current Work

• extending algorithmic debugging wrt. (dis-)agreements

• exploiting extension as program similarity metric

• using metric to inform search

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.4

Overview

Prior Work

• encoded expert knowledge as Prolog program(s)

• developed variant of algorithmic debugging to localise learner’s bug wrt.
expert procedure (KI-11)

• perturbated expert program to reproduce learner’s erroneous procedure
(LOPSTR-12)

• interative process interleaving algorithmic debugging with program
transformation

• but transformation costly, vast search space conquered (mostly) in
blind manner

Current Work

• extending algorithmic debugging wrt. (dis-)agreements

• exploiting extension as program similarity metric

• using metric to inform search

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.5

Subtraction in Prolog (AM): 3 2 minuends
- 1 7 subtrahends

_ _ results

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.6

Subtraction in Prolog (AM): 3 2 minuends
- 1 7 subtrahends

_ _ results

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.7

E. Shapiro, Algorithmic Debugging, MIT Press, 1982

• meta-interpreter using divide and conquer to descend computation trees

• semi-automatic debugging technique to localise bugs

• based on the answers of an oracle – the programmer – to a series of
questions generated automatically by algorithmic debugger

• answers provide debugger with information about the correctness of
some (sub-)computations of given program

• uses them to guide bug search until portion of code responsible for buggy
behaviour is identified: “irreducible disagreement”

At first sight not applicable in tutoring context, but

• turning Shapiro’s idea on its head!

• take expert program as buggy program, and oracle answers as student
answers

• disagreement between program and oracle identifies learner error

• moreover, oracle can be mechanised, all student answers “read” from
solution

• moreover, Oracle also returns nature of disagreement: missing, incorrect,
and superfluous

⇒ this variant of algorithmic debugging locates errors in student problem
solving

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.7

E. Shapiro, Algorithmic Debugging, MIT Press, 1982

• meta-interpreter using divide and conquer to descend computation trees

• semi-automatic debugging technique to localise bugs

• based on the answers of an oracle – the programmer – to a series of
questions generated automatically by algorithmic debugger

• answers provide debugger with information about the correctness of
some (sub-)computations of given program

• uses them to guide bug search until portion of code responsible for buggy
behaviour is identified: “irreducible disagreement”

At first sight not applicable in tutoring context, but

• turning Shapiro’s idea on its head!

• take expert program as buggy program, and oracle answers as student
answers

• disagreement between program and oracle identifies learner error

• moreover, oracle can be mechanised, all student answers “read” from
solution

• moreover, Oracle also returns nature of disagreement: missing, incorrect,
and superfluous

⇒ this variant of algorithmic debugging locates errors in student problem
solving

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Example

3 2 12
- 1 7
= 2 5

get_diagnosis(subtract([(3,1,S1),(2,7,S2)],[(3,1,2),(12,7,5)],Diagnosis).

Q: do you agree that the following goal holds:
subtract([(3,1,_G226), (2,7,_G235)],[(3,2,1), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
process_column([(3,1,_G475), (2,7,_G484)],[(3,2,_G475), (12,7,5)])

|: no.

Q: do you agree that the following goal holds:
add_ten_to_minuend((2,7,_G652), (12,7,_G652))

|: yes.

Q: do you agree that the following goal holds:
increment((3,1,_G643), (3,2,_G643))

|: no.
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

Perturbations

Perturbations

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.10

Example:

5 2 4
- 2 9 8
= 3 7 4

• First irreducible disagreement at

add_ten_to_minuend(3, (4,8,_G808), (14,8,_G808))

delete subgoal add_ten_to_minuend/3 from first clause of process_column/3

• Given modified program, next irreducible disagreement (with cause “missing”) at:

increment(2, (2,9,_G799), (2,10,_G799))

delete subgoal increment/3 from the first clause of process_column/3
• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(3, (4,8,_G808), (4,8,-4))

Mere deletion of take_difference/3 not possible, other perturbation required
shadow existing clause with

take_difference(3, (4, 8, _R), (4, 8, 4)) :- irreducible.

• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(2, (2,9,_G808), (2,9,-7))

shadow existing clause with

take_difference(_CC, (2, 9, _R), (2, 9, 7)) :- irreducible.

⇒ New program reproduces learner’s result.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.10

Example:

5 2 4
- 2 9 8
= 3 7 4

• First irreducible disagreement at

add_ten_to_minuend(3, (4,8,_G808), (14,8,_G808))

delete subgoal add_ten_to_minuend/3 from first clause of process_column/3
• Given modified program, next irreducible disagreement (with cause “missing”) at:

increment(2, (2,9,_G799), (2,10,_G799))

delete subgoal increment/3 from the first clause of process_column/3

• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(3, (4,8,_G808), (4,8,-4))

Mere deletion of take_difference/3 not possible, other perturbation required
shadow existing clause with

take_difference(3, (4, 8, _R), (4, 8, 4)) :- irreducible.

• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(2, (2,9,_G808), (2,9,-7))

shadow existing clause with

take_difference(_CC, (2, 9, _R), (2, 9, 7)) :- irreducible.

⇒ New program reproduces learner’s result.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.10

Example:

5 2 4
- 2 9 8
= 3 7 4

• First irreducible disagreement at

add_ten_to_minuend(3, (4,8,_G808), (14,8,_G808))

delete subgoal add_ten_to_minuend/3 from first clause of process_column/3
• Given modified program, next irreducible disagreement (with cause “missing”) at:

increment(2, (2,9,_G799), (2,10,_G799))

delete subgoal increment/3 from the first clause of process_column/3
• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(3, (4,8,_G808), (4,8,-4))

Mere deletion of take_difference/3 not possible, other perturbation required
shadow existing clause with

take_difference(3, (4, 8, _R), (4, 8, 4)) :- irreducible.

• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(2, (2,9,_G808), (2,9,-7))

shadow existing clause with

take_difference(_CC, (2, 9, _R), (2, 9, 7)) :- irreducible.

⇒ New program reproduces learner’s result.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.10

Example:

5 2 4
- 2 9 8
= 3 7 4

• First irreducible disagreement at

add_ten_to_minuend(3, (4,8,_G808), (14,8,_G808))

delete subgoal add_ten_to_minuend/3 from first clause of process_column/3
• Given modified program, next irreducible disagreement (with cause “missing”) at:

increment(2, (2,9,_G799), (2,10,_G799))

delete subgoal increment/3 from the first clause of process_column/3
• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(3, (4,8,_G808), (4,8,-4))

Mere deletion of take_difference/3 not possible, other perturbation required
shadow existing clause with

take_difference(3, (4, 8, _R), (4, 8, 4)) :- irreducible.

• Next irreducible disagreement (with cause “incorrect”) at:

take_difference(2, (2,9,_G808), (2,9,-7))

shadow existing clause with

take_difference(_CC, (2, 9, _R), (2, 9, 7)) :- irreducible.

⇒ New program reproduces learner’s result.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.11

Heuristics For Program Perturbations

• “often”, algorithmic debugging correctly indicates the clause that required
manipulation

• skipping a step can often be reproduced by deleting the respective call to
the clause in question in the expert program

• never delete a clause that ran successfully at an earlier problem solving
stage⇒ shadow clause with specialised instance (derivable from
algorithmic debugging)

• shadowing is also a good heuristics for irreducible disagreements with
cause “incorrect” and as fallback.

but better heuristics needed
• which action to choose from, e.g. in a more search-global context

• same action can be applied at different program locations, e.g., delete
one or many subgoals in the clause indicated by algorithmic debugging?

• other mutation operators will be added

• transformation cost should be taken into account

New approach defines program distance measure to inform search...

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.11

Heuristics For Program Perturbations

• “often”, algorithmic debugging correctly indicates the clause that required
manipulation

• skipping a step can often be reproduced by deleting the respective call to
the clause in question in the expert program

• never delete a clause that ran successfully at an earlier problem solving
stage⇒ shadow clause with specialised instance (derivable from
algorithmic debugging)

• shadowing is also a good heuristics for irreducible disagreements with
cause “incorrect” and as fallback.

but better heuristics needed
• which action to choose from, e.g. in a more search-global context

• same action can be applied at different program locations, e.g., delete
one or many subgoals in the clause indicated by algorithmic debugging?

• other mutation operators will be added

• transformation cost should be taken into account

New approach defines program distance measure to inform search...

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.12

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.13

Idea: Consider problems in terms of heuristic search

• replace blind-search over program transformations with heuristic search

• each state in the search tree is represented by the tuple

• Algorithm: the program to be transformed
• IrreducibleDisagreement: the first irreducible disagreement

with learner behaviour
• Path: a sequence of transformation actions applied so far

• each state n has heuristic measure f (n) = g(n) + h(n)

• g(n) is cost function
• ShadowClause: 5 (expensive)
• DeleteSubgoalsOfClause: 1 for each subgoal deleted,

extra penalty if applicable.
• DeleteCallToClause: 1
• SwapClauseArguments: 1

• h(n) measures program distance in terms of agreement score

Algorithm
IrreducibleDisagreement
Path

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.13

Idea: Consider problems in terms of heuristic search

• replace blind-search over program transformations with heuristic search

• each state in the search tree is represented by the tuple

• Algorithm: the program to be transformed
• IrreducibleDisagreement: the first irreducible disagreement

with learner behaviour
• Path: a sequence of transformation actions applied so far

• each state n has heuristic measure f (n) = g(n) + h(n)

• g(n) is cost function
• ShadowClause: 5 (expensive)
• DeleteSubgoalsOfClause: 1 for each subgoal deleted,

extra penalty if applicable.
• DeleteCallToClause: 1
• SwapClauseArguments: 1

• h(n) measures program distance in terms of agreement score

Algorithm
IrreducibleDisagreement
Path

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.13

Idea: Consider problems in terms of heuristic search

• replace blind-search over program transformations with heuristic search

• each state in the search tree is represented by the tuple

• Algorithm: the program to be transformed
• IrreducibleDisagreement: the first irreducible disagreement

with learner behaviour
• Path: a sequence of transformation actions applied so far

• each state n has heuristic measure f (n) = g(n) + h(n)

• g(n) is cost function
• ShadowClause: 5 (expensive)
• DeleteSubgoalsOfClause: 1 for each subgoal deleted,

extra penalty if applicable.
• DeleteCallToClause: 1
• SwapClauseArguments: 1

• h(n) measures program distance in terms of agreement score

Algorithm
IrreducibleDisagreement
Path

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.14

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at add_ten_to_minuend/3.

• Scope of action:

n1 deletion of call to add_ten_to_minuend/3 in first program clause
process_column/3

n2 addition of irreducible disagreement (learner’s view)
add_ten_to_minuend(3,1,1):-irreducible.

n3 deletion of subgoals from definition of predicate
add_ten_to_minuend/3: delete subgoal M10 is M + 10

• search space:

smaller-from-larger
add_ten_to_minuend/3
add_ten_to_minuend/3
process_column/3
add_ten_to_minuend(3, 1, 1) :- irreducible.
add_ten_to_minuend/3

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.14

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at add_ten_to_minuend/3.

• Scope of action:

n1 deletion of call to add_ten_to_minuend/3 in first program clause
process_column/3

n2 addition of irreducible disagreement (learner’s view)
add_ten_to_minuend(3,1,1):-irreducible.

n3 deletion of subgoals from definition of predicate
add_ten_to_minuend/3: delete subgoal M10 is M + 10

• search space:

smaller-from-larger
add_ten_to_minuend/3
add_ten_to_minuend/3
process_column/3
add_ten_to_minuend(3, 1, 1) :- irreducible.
add_ten_to_minuend/3

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.14

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at add_ten_to_minuend/3.

• Scope of action:

n1 deletion of call to add_ten_to_minuend/3 in first program clause
process_column/3

n2 addition of irreducible disagreement (learner’s view)
add_ten_to_minuend(3,1,1):-irreducible.

n3 deletion of subgoals from definition of predicate
add_ten_to_minuend/3: delete subgoal M10 is M + 10

• search space:

smaller-from-larger
add_ten_to_minuend/3
add_ten_to_minuend/3
process_column/3
add_ten_to_minuend(3, 1, 1) :- irreducible.
add_ten_to_minuend/3

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.15

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at decrement/3.

• Scope of action:

n11 delete call to decrement/3 in first clause of process_column/3.
f (n11) = (1 + 1) + (2− 1) = 3

n12 delete one/more subgoals in any of the two clause definitions for
decrement/3, e.g., in first clause:
• delete subgoals NM1 is NM-1, NM is M+10 and
decrement(CurrentColumn1, RestSum,
NewRestSum).
f (n12(a)) = (1 + 3) + (4− 1) = 7

• delete the two goals NM is M + 10 and NM1 is NM-1:
f (n12(b)) = (1 + 2) + 4− 1 = 6.

• delete single goal NM1 is NM-1:
f (n12(c)) = (1 + 1) + 5− 0 = 7

• delete recursive call to decrement/3:
f (n12(d)) = (1 + 1) + 3− 1 = 4

n13 add disagreement clause to program
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]):-irreducible.

f (n13) = (1 + 5) + 4− 1 = 9.

• n11 has lowest overall estimate; since not goal node, continue search...

smaller-from-larger
decrement/3
process_column/3
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]) :- irreducible.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.15

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at decrement/3.

• Scope of action:

n11 delete call to decrement/3 in first clause of process_column/3.
f (n11) = (1 + 1) + (2− 1) = 3

n12 delete one/more subgoals in any of the two clause definitions for
decrement/3, e.g., in first clause:
• delete subgoals NM1 is NM-1, NM is M+10 and
decrement(CurrentColumn1, RestSum,
NewRestSum).
f (n12(a)) = (1 + 3) + (4− 1) = 7

• delete the two goals NM is M + 10 and NM1 is NM-1:
f (n12(b)) = (1 + 2) + 4− 1 = 6.

• delete single goal NM1 is NM-1:
f (n12(c)) = (1 + 1) + 5− 0 = 7

• delete recursive call to decrement/3:
f (n12(d)) = (1 + 1) + 3− 1 = 4

n13 add disagreement clause to program
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]):-irreducible.

f (n13) = (1 + 5) + 4− 1 = 9.

• n11 has lowest overall estimate; since not goal node, continue search...

smaller-from-larger
decrement/3
process_column/3
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]) :- irreducible.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.15

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at decrement/3.

• Scope of action:

n11 delete call to decrement/3 in first clause of process_column/3.
f (n11) = (1 + 1) + (2− 1) = 3

n12 delete one/more subgoals in any of the two clause definitions for
decrement/3, e.g., in first clause:
• delete subgoals NM1 is NM-1, NM is M+10 and
decrement(CurrentColumn1, RestSum,
NewRestSum).
f (n12(a)) = (1 + 3) + (4− 1) = 7

• delete the two goals NM is M + 10 and NM1 is NM-1:
f (n12(b)) = (1 + 2) + 4− 1 = 6.

• delete single goal NM1 is NM-1:
f (n12(c)) = (1 + 1) + 5− 0 = 7

• delete recursive call to decrement/3:
f (n12(d)) = (1 + 1) + 3− 1 = 4

n13 add disagreement clause to program
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]):-irreducible.

f (n13) = (1 + 5) + 4− 1 = 9.

• n11 has lowest overall estimate; since not goal node, continue search...

smaller-from-larger
decrement/3
process_column/3
decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]) :- irreducible.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.16

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at take_difference/4

• scope of action:

n111 delete call to take_difference/4 in 1st or 2nd clause of
process_column/3; not fruitful

n112 delete single subgoal in definition of take_difference/4;
produces incorrect cells.

n113 insert clause take_difference(3,1,9,8); removes
disagreement in current column, but not in others

n114 swap arguments of take_difference/4 in 1st or 2nd clause of
process_column/3;

⇒ n114 yields program with zero disagreements

• winning path:

1 deletion of call to clause add_ten_to_minuend/3 (line 15)
2 deletion of call to clause decrement/3 (line 17)
3 swapping of arguments in take_difference/4 (line 18)

smaller-from-larger
take_difference/4
take_difference/4
process_column/3
take_difference/4
take_difference(3, 1, 9, 8)
take_difference/4
process_column/3
add_ten_to_minuend/3
decrement/3
take_difference/4

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.16

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at take_difference/4

• scope of action:

n111 delete call to take_difference/4 in 1st or 2nd clause of
process_column/3; not fruitful

n112 delete single subgoal in definition of take_difference/4;
produces incorrect cells.

n113 insert clause take_difference(3,1,9,8); removes
disagreement in current column, but not in others

n114 swap arguments of take_difference/4 in 1st or 2nd clause of
process_column/3;

⇒ n114 yields program with zero disagreements

• winning path:

1 deletion of call to clause add_ten_to_minuend/3 (line 15)
2 deletion of call to clause decrement/3 (line 17)
3 swapping of arguments in take_difference/4 (line 18)

smaller-from-larger
take_difference/4
take_difference/4
process_column/3
take_difference/4
take_difference(3, 1, 9, 8)
take_difference/4
process_column/3
add_ten_to_minuend/3
decrement/3
take_difference/4

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.16

Example

• smaller-from-larger:
4 0 1

- 1 9 9
= 3 9 8

Error: first irreducible disagreement at take_difference/4

• scope of action:

n111 delete call to take_difference/4 in 1st or 2nd clause of
process_column/3; not fruitful

n112 delete single subgoal in definition of take_difference/4;
produces incorrect cells.

n113 insert clause take_difference(3,1,9,8); removes
disagreement in current column, but not in others

n114 swap arguments of take_difference/4 in 1st or 2nd clause of
process_column/3;

⇒ n114 yields program with zero disagreements

• winning path:

1 deletion of call to clause add_ten_to_minuend/3 (line 15)
2 deletion of call to clause decrement/3 (line 17)
3 swapping of arguments in take_difference/4 (line 18)

smaller-from-larger
take_difference/4
take_difference/4
process_column/3
take_difference/4
take_difference(3, 1, 9, 8)
take_difference/4
process_column/3
add_ten_to_minuend/3
decrement/3
take_difference/4

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.17

Discussion

• for top-five bugs, new method capable of reproducing the “preferred”
perturbations, using same path

• costlier goal nodes were also found

• g(n) also important, because it discourages use of certain ops

• method also capable of reproducing programs for the other errors,
but with task-specific ShadowClause perturbations

• ShadowClause is fall-back and guarantees success

• add more mutation operators [Toaldo and Vergilio, 2006],

• investigate their interaction with our existing ones,

• fine-tune cost function, and study effect

• goal to (mostly) “un-employ” the costly ShadowClause operator

• need to conduct thorough experimental evaluation in terms of
computational benefits of using informed search

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.17

Discussion

• for top-five bugs, new method capable of reproducing the “preferred”
perturbations, using same path

• costlier goal nodes were also found

• g(n) also important, because it discourages use of certain ops

• method also capable of reproducing programs for the other errors,
but with task-specific ShadowClause perturbations

• ShadowClause is fall-back and guarantees success

• add more mutation operators [Toaldo and Vergilio, 2006],

• investigate their interaction with our existing ones,

• fine-tune cost function, and study effect

• goal to (mostly) “un-employ” the costly ShadowClause operator

• need to conduct thorough experimental evaluation in terms of
computational benefits of using informed search

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.18

Related Work: Program Testing

Program Testing

• rests on competent programmer hypothesis (deMillo 1978)

• programmers create programs that are close to being correct
• if program is buggy, it differs from correct program only by

combination of simple errors
• programmers have rough idea of kinds of errors that are likely to

occur, and they are capable of examining their programs in detail
(and fix them)

• coupling effect: test cases that detect simple types of faults are
sensitive enough to detect more complex types of faults

• analogy to VanLehn’s theory of impasses and repairs

• learners exhibit problem solving behaviour that is often close to
being correct

• if their “program” is buggy, it differs from the expert behaviour only
by a combination of simple errors

• teachers have rough idea of the kind of errors learners are likely to
make (and learners might be aware of their repairs, too), and
learners are capable of correcting their mistakes (either themselves
or with teacher support)

• complex errors can be described in terms of simpler ones

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.18

Related Work: Program Testing

Program Testing

• rests on competent programmer hypothesis (deMillo 1978)

• programmers create programs that are close to being correct
• if program is buggy, it differs from correct program only by

combination of simple errors
• programmers have rough idea of kinds of errors that are likely to

occur, and they are capable of examining their programs in detail
(and fix them)

• coupling effect: test cases that detect simple types of faults are
sensitive enough to detect more complex types of faults

• analogy to VanLehn’s theory of impasses and repairs

• learners exhibit problem solving behaviour that is often close to
being correct

• if their “program” is buggy, it differs from the expert behaviour only
by a combination of simple errors

• teachers have rough idea of the kind of errors learners are likely to
make (and learners might be aware of their repairs, too), and
learners are capable of correcting their mistakes (either themselves
or with teacher support)

• complex errors can be described in terms of simpler ones

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.19

Related Work: Program Testing

Mutation Testing
• identifies test suite deficiencies

• can increase programmer’s confidence in the tests’ fault detection power

• mutated variant p′ of program p created to evaluate test suite designed
for p on p′

• if behaviour between p and p′ on test t is different, mutant p′ is dead; test
suite “good enough” wrt. mutation

• if behaviours equal, then either p and p′ are equivalent, or test set not
good enough.
programmer must examine equivalence; if negative, test suite must be
extended to cover the critical test

Our Approach
• if given program unable to reproduce a learner’s solution, we create set

of mutants

• if one of them reproduces the learner’s solution, it passes test, and we
are done

• otherwise, we choose the best mutant, given f , and continue perturbating

• originality due to systematic search for mutations measuring distance
between mutants wrt. a given input/output.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.19

Related Work: Program Testing

Mutation Testing
• identifies test suite deficiencies

• can increase programmer’s confidence in the tests’ fault detection power

• mutated variant p′ of program p created to evaluate test suite designed
for p on p′

• if behaviour between p and p′ on test t is different, mutant p′ is dead; test
suite “good enough” wrt. mutation

• if behaviours equal, then either p and p′ are equivalent, or test set not
good enough.
programmer must examine equivalence; if negative, test suite must be
extended to cover the critical test

Our Approach
• if given program unable to reproduce a learner’s solution, we create set

of mutants

• if one of them reproduces the learner’s solution, it passes test, and we
are done

• otherwise, we choose the best mutant, given f , and continue perturbating

• originality due to systematic search for mutations measuring distance
between mutants wrt. a given input/output.

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.20

Conclusion Work
• proposed method to automatically transform initial Prolog program into

another program capable of producing a given input/output behaviour

• now supported by heuristic function that measures program distance

• application context where test-debug-repair cycle can be mechanised

• because of reference model
• many learner errors can be captured and reproduced by

combination of simple, syntactically-driven program transformation
actions

Future Work
• practical employment for pupils and teachers

• revisit mechanisation of Oracle, using program specifications

• adapt other LP techniques to support diagnosis engine

• in the long term, build programming tutor!

Heuristic Search Over
Program

Transformations

Claus Zinn

Introduction
Motivation

Typical Errors

Context
Subtraction in Prolog

Algorithmic Debugging

Running Example for AD

Code Perturbation

Running Transformation
Example

Status

Heuristic Search
Extended Algorithmic
Debugging

Informed Search

Example

Discussion

Conclusion

1.20

Conclusion Work
• proposed method to automatically transform initial Prolog program into

another program capable of producing a given input/output behaviour

• now supported by heuristic function that measures program distance

• application context where test-debug-repair cycle can be mechanised

• because of reference model
• many learner errors can be captured and reproduced by

combination of simple, syntactically-driven program transformation
actions

Future Work
• practical employment for pupils and teachers

• revisit mechanisation of Oracle, using program specifications

• adapt other LP techniques to support diagnosis engine

• in the long term, build programming tutor!

	Introduction
	
	

	Context
	
	
	
	
	
	

	Heuristic Search
	
	
	

	Discussion
	Conclusion

