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Abstraction of object set: Meta-set  

• Metaset consists of: 
<type constraints>  
– Defines types in object databases 
– Defines tables in relational databases 
– Defines basic structures in other databases 

[property-value constraints] are combinations of metadata and value (data); 
– In relational context it can be interpreted as property-value constraint; 
– In key-value stores it can be interpreted as key-value pair; 

{object set constraints} which defines relationships between 2 sets 

• Example: 
<Person>[FirstName="Mikus", LastName= ="Vanags"] 

• Meta-set can be interpreted as query to data store. Equivalent query to 
relational database: 
SELECT * FROM PERSONS 
WHERE FirstName="Mikus" AND LastName="Vanags" 
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Mostly people use many abstractions, 
but do not interpret them as 

abstractions 

Trigonometric  functions are abstractions of 
infinite Tailor series. Without these abstractions 

many things would not be possible! 
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Why meta-sets are so important? 

• Meta-set describes set of unknown number 
of objects (theoretically it could be even 
infinity). 

• Second order predicate logic engine could 
work without meta-sets, but it still could 
ended with loading in memory all database 
content during deduction process. 
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Querying process in Decentralized 
Deduction Engine 
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Meta-set calculi similarity to 
constraint logic programming 

• In addition to constraint logic programming 
Meta-set calculi: 

– Contain type information 

– Support object set abstractions 

– work with many constraint stores  

• Both CLP and MSC requires modifications in 
logic programming engine. 
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Physical model used in all examples 
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Meta-set matching and unification 
with meta-sets 

• Meta-set matching differs from object matching, because meta-sets are 
like small parts of larger query that is being built and not all differences in 
meta-sets are considered as failures in matching. For example: 

1) something(<Dog>) matches with something(<Dog>) 
2) something(<Dog>) matches with something(<Pet>) 
3) something(<Dog>) matches with something(<Animal>) 
4) something(<Dog>) does not match with something(<Cat>) 
5) something(<Dog>) does not match with something(<Person>) 
6) something(<Dog>) matches with something(x). 
• In unification, when meta-set type constraints matches and if variable was 

used in matching , the meta-set, to which the variable references, will 
contain updated list with the most specific type constraints from both 
meta-sets, merged lists of both meta-set property-value constraints and 
set-constraints 
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Difference between TermNode syntax 
and TermExpression syntax 

• TermNode syntax is not type safe, but 
expressions are processed at compile time. 

• TermExpression syntax is more type safe (still not 
fully type safe), but TermExpressions are 
evaluated at runtime. 

• We wanted to design general purpose language 
extensions to support meta-sets (and get 
performance + full type safety), but discovered, 
that large software vendors can just ignore us, we 
needed orthogonal (independent solution)... 
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Proposed Solution 

• Abstract data querying language:  

“Get” or more googlable form “GetLang” 

• which is based on our invented calculus: 

“Meta-set calculus” – extension of second order 
predicate calculus 

•  and our calculus implementation is named: 

“Decentralized Deduction Engine” or simply DDE 
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GetLang use cases 
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GetLang example for 4 queries 
reusing common query parts 

using DataStructures; 
 
metaset Invoice a; 
metaset TransportationInvoice b; 
metaset AcceptanceInvoice c; 
metaset b,c d; 
metaset a,d e; 
 
parameter Warehouse Warehouse; 
parameter DateTime DateFrom; 
parameter DateTime DateTo; 
 
inPeriod(e) : e.DealDate >= DateFrom, e.DealDate < DateTo; 
atWarehouse(a) : a.Warehouse = Warehouse; 
fromWarehouse(d) : d.WarehouseFrom = Warehouse; 
toWarehouse(d) : d.WarehouseTo = Warehouse; 
order(d) : OrderAscending(d.DealDate, d.DealNumber); 
 
buyingAtWarehouseInPeriod(a) : atWarehouse(a), inPeriod(a), order(a); 
transportationFromWarehouseInPeriod(b) : fromWarehouse(b), inPeriod(b); 
toWarehouseInPeriod(d) : toWarehouse(d), inPeriod(d); 
 
 
BuyingAtWarehouseInPeriod = buyingAtWarehouseInPeriod(a)? 
TransportationFromWarehouseInPeriod = transportationFromWarehouseInPeriod(b)? 
TransportationToWarehouseInPeriod = toWarehouseInPeriod(b)? 
AcceptedAtWarehouseInPeriod = toWarehouseInPeriod(c)? 

From this code will be 
possible to generate code 
in general purpose 
programming languages 
like C#, Java and others... 
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Comparison of db4o querying technologies 
(integrated in general purpose programming languages) 

// soda query definition execution example 

var query = _db.Query(); 

query.Constrain(typeof(Invoice)); 

query.Descend("_warehouse").Constrain(_warehouse); 

query.Descend("_dealDate").Constrain(dateFrom).Greater().Equal(); 

query.Descend("_dealDate").Constrain(dateTo).Smaller(); 

query.Descend("_dealDate").OrderAscending(); 

query.Descend("_dealNumber").OrderAscending(); 

var results query.Execute().OfType<Invoice>(); 

 

// linq query definition and execution example 

var results = (from Invoice invoice in _db 

               where 

                   invoice.Warehouse == _warehouse && 

                   invoice.DealDate >= dateFrom && 

                   invoice.DealDate < dateTo 

               orderby invoice.DealDate, invoice.DealNumber 

               select invoice).ToList(); 

 

// dde query execution example 

// _dde is instance of QueryingLogic class generated from GetLang code 

var results _dde.BuyingAtWarehouseInPeriod(_warehouse, dateFrom, dateTo); 

 

 

LINQ queries: 
   not always performs excellent, 
   are strongly typed, 
   can’t reuse existing query parts, 
   are difficult to serialize 

SODA queries: 
   performs excellent, 
   are not type safe, 
   can’t reuse existing query parts, 
   are difficult to serialize 

DDE queries: 
   performs as fast as SODA, 
   reuses existing query parts, 
   are strongly typed, 
   can be easily serialized, 
   and used in distributed systems 
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Layered structure of DDE and our 
responsibilities 
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