
http://www.getlang.org

Meta-set calculus as mathematical
basis for creating

abstract, structured data store
querying technology

Logics Research Centre SIA

Latvia University of Agriculture

1/14

http://www.getlang.org

Abstraction of object set: Meta-set

• Metaset consists of:
<type constraints>
– Defines types in object databases
– Defines tables in relational databases
– Defines basic structures in other databases

[property-value constraints] are combinations of metadata and value (data);
– In relational context it can be interpreted as property-value constraint;
– In key-value stores it can be interpreted as key-value pair;

{object set constraints} which defines relationships between 2 sets

• Example:
<Person>[FirstName="Mikus", LastName= ="Vanags"]

• Meta-set can be interpreted as query to data store. Equivalent query to
relational database:
SELECT * FROM PERSONS
WHERE FirstName="Mikus" AND LastName="Vanags"

2/14

http://www.getlang.org

Mostly people use many abstractions,
but do not interpret them as

abstractions

Trigonometric functions are abstractions of
infinite Tailor series. Without these abstractions

many things would not be possible!

3/14

http://www.getlang.org

Why meta-sets are so important?

• Meta-set describes set of unknown number
of objects (theoretically it could be even
infinity).

• Second order predicate logic engine could
work without meta-sets, but it still could
ended with loading in memory all database
content during deduction process.

4/14

http://www.getlang.org

Querying process in Decentralized
Deduction Engine

5/14

Server

Client
Question

Deduction Process Result

Meta-sets

Deduction Process

Facts
containing
Meta-sets

Rules

Result

Objects

Business ObjectsFacts and rules

http://www.getlang.org

Meta-set calculi similarity to
constraint logic programming

• In addition to constraint logic programming
Meta-set calculi:

– Contain type information

– Support object set abstractions

– work with many constraint stores

• Both CLP and MSC requires modifications in
logic programming engine.

6/14

http://www.getlang.org

Physical model used in all examples

7/14

http://www.getlang.org

Meta-set matching and unification
with meta-sets

• Meta-set matching differs from object matching, because meta-sets are
like small parts of larger query that is being built and not all differences in
meta-sets are considered as failures in matching. For example:

1) something(<Dog>) matches with something(<Dog>)
2) something(<Dog>) matches with something(<Pet>)
3) something(<Dog>) matches with something(<Animal>)
4) something(<Dog>) does not match with something(<Cat>)
5) something(<Dog>) does not match with something(<Person>)
6) something(<Dog>) matches with something(x).
• In unification, when meta-set type constraints matches and if variable was

used in matching , the meta-set, to which the variable references, will
contain updated list with the most specific type constraints from both
meta-sets, merged lists of both meta-set property-value constraints and
set-constraints

8/14

http://www.getlang.org

Difference between TermNode syntax
and TermExpression syntax

• TermNode syntax is not type safe, but
expressions are processed at compile time.

• TermExpression syntax is more type safe (still not
fully type safe), but TermExpressions are
evaluated at runtime.

• We wanted to design general purpose language
extensions to support meta-sets (and get
performance + full type safety), but discovered,
that large software vendors can just ignore us, we
needed orthogonal (independent solution)...

9/14

http://www.getlang.org

Proposed Solution

• Abstract data querying language:

“Get” or more googlable form “GetLang”

• which is based on our invented calculus:

“Meta-set calculus” – extension of second order
predicate calculus

• and our calculus implementation is named:

“Decentralized Deduction Engine” or simply DDE

10/14

http://www.getlang.org

GetLang use cases

11/14

GetLang code
Meta-sets

(abstractions of
queries)

C# code

...

Code generation

Java code

Python code

Code interpretation Db connection

Query generation

Resulting objects

Query

Query execution

Code execution

Class declarations
according to

available metadata

Logical deduction
Query rules in form suitable for

 logical deduction

http://www.getlang.org

GetLang example for 4 queries
reusing common query parts

using DataStructures;

metaset Invoice a;
metaset TransportationInvoice b;
metaset AcceptanceInvoice c;
metaset b,c d;
metaset a,d e;

parameter Warehouse Warehouse;
parameter DateTime DateFrom;
parameter DateTime DateTo;

inPeriod(e) : e.DealDate >= DateFrom, e.DealDate < DateTo;
atWarehouse(a) : a.Warehouse = Warehouse;
fromWarehouse(d) : d.WarehouseFrom = Warehouse;
toWarehouse(d) : d.WarehouseTo = Warehouse;
order(d) : OrderAscending(d.DealDate, d.DealNumber);

buyingAtWarehouseInPeriod(a) : atWarehouse(a), inPeriod(a), order(a);
transportationFromWarehouseInPeriod(b) : fromWarehouse(b), inPeriod(b);
toWarehouseInPeriod(d) : toWarehouse(d), inPeriod(d);

BuyingAtWarehouseInPeriod = buyingAtWarehouseInPeriod(a)?
TransportationFromWarehouseInPeriod = transportationFromWarehouseInPeriod(b)?
TransportationToWarehouseInPeriod = toWarehouseInPeriod(b)?
AcceptedAtWarehouseInPeriod = toWarehouseInPeriod(c)?

From this code will be
possible to generate code
in general purpose
programming languages
like C#, Java and others...

12/14

http://www.getlang.org

Comparison of db4o querying technologies
(integrated in general purpose programming languages)

// soda query definition execution example

var query = _db.Query();

query.Constrain(typeof(Invoice));

query.Descend("_warehouse").Constrain(_warehouse);

query.Descend("_dealDate").Constrain(dateFrom).Greater().Equal();

query.Descend("_dealDate").Constrain(dateTo).Smaller();

query.Descend("_dealDate").OrderAscending();

query.Descend("_dealNumber").OrderAscending();

var results query.Execute().OfType<Invoice>();

// linq query definition and execution example

var results = (from Invoice invoice in _db

 where

 invoice.Warehouse == _warehouse &&

 invoice.DealDate >= dateFrom &&

 invoice.DealDate < dateTo

 orderby invoice.DealDate, invoice.DealNumber

 select invoice).ToList();

// dde query execution example

// _dde is instance of QueryingLogic class generated from GetLang code

var results _dde.BuyingAtWarehouseInPeriod(_warehouse, dateFrom, dateTo);

LINQ queries:
 not always performs excellent,
 are strongly typed,
 can’t reuse existing query parts,
 are difficult to serialize

SODA queries:
 performs excellent,
 are not type safe,
 can’t reuse existing query parts,
 are difficult to serialize

DDE queries:
 performs as fast as SODA,
 reuses existing query parts,
 are strongly typed,
 can be easily serialized,
 and used in distributed systems

13/14

http://www.getlang.org

Layered structure of DDE and our
responsibilities

14/14

User interface and external applications

Database engine or API

Facts
(business objects)

Decentralized Deduction Engine

Meta-facts

Rules

Meta-set calculus engine

GetLang / code generated from GetLang

Our responsibility

Hosting
company
responsibility

DB vendor
responsibility

Other programmers
responsibility

