
On Axiomatic Rejection
for the Description Logic ALC

Hans Tompits

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group

Joint work with Gerald Berger

Context

ä The traditional view about proof calculi is that they are
assertional—their aim is to axiomatise the valid propositions of a
logic.

ä But we can also have a complementary view:

• Instead of axiomatising the valid sentences we may axiomatise
the invalid ones.

• In such a system, false propositions are deduced from other
(elementary) false ones.

å Calculi axiomatising the invalid sentences of a logic are called
rejection systems or complementary calculi.

1

Context

ä The traditional view about proof calculi is that they are
assertional—their aim is to axiomatise the valid propositions of a
logic.

ä But we can also have a complementary view:

• Instead of axiomatising the valid sentences we may axiomatise
the invalid ones.

• In such a system, false propositions are deduced from other
(elementary) false ones.

å Calculi axiomatising the invalid sentences of a logic are called
rejection systems or complementary calculi.

1

Context

ä The traditional view about proof calculi is that they are
assertional—their aim is to axiomatise the valid propositions of a
logic.

ä But we can also have a complementary view:

• Instead of axiomatising the valid sentences we may axiomatise
the invalid ones.

• In such a system, false propositions are deduced from other
(elementary) false ones.

å Calculi axiomatising the invalid sentences of a logic are called
rejection systems or complementary calculi.

1

Context

ä The traditional view about proof calculi is that they are
assertional—their aim is to axiomatise the valid propositions of a
logic.

ä But we can also have a complementary view:

• Instead of axiomatising the valid sentences we may axiomatise
the invalid ones.

• In such a system, false propositions are deduced from other
(elementary) false ones.

å Calculi axiomatising the invalid sentences of a logic are called
rejection systems or complementary calculi.

1

Context (ctd.)

“Ich bin der Geist der stets verneint!
Und das mit Recht; denn alles, was entsteht,

Ist wert, dass es zugrunde geht.”

(“I am the spirit, ever, that denies!
And rightly so; since everything created,

In turn deserves to be annihilated.”)

–J.W. von Goethe, Faust I

2

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994).

3

Main Contributions

ä We introduce a Gentzen-type rejection systems for description logic
ALC.

• Gentzen-type systems are well-known calculi optimised for proof
search.

• Description logics are important knowledge-representation
languages for modelling ontologies

– provide the formal underpinning for semantic-web
reasoning.

ä Our calculus axiomatises concept non-subsumption.

• That is, a sequent C a D is provable in our calculus iff C v D
does not hold.

ä We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.

ä Finally, we also obtain a calculus for the multi-modal version of
modal logic K by the relation of ALC with this logic

å generalises a rejection calculus for standard K by Goranko
(1994). 3

Historical Remarks

Investigation of invalid arguments traces back to Aristotle in his analysis
of logical fallacies in On Sophistical Refutations of the Organon.

Raphael’s Scuola di Atene

4

Historical Remarks (ctd.)

ä The first system for axiomatic rejection was introduced by Jan
 Lukasiewicz in 1957 in his book

“Aristotle’s syllogistic from the standpoint of modern
formal logic”

• There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule

if ϕ ⊃ ψ is asserted and ψ is rejected, then ϕ is rejected too.

ä Subsequently, other rejection systems were introduced for
intuitionistic logic, different modal logics, and many-valued logics.

5

Historical Remarks (ctd.)

ä The first system for axiomatic rejection was introduced by Jan
 Lukasiewicz in 1957 in his book

“Aristotle’s syllogistic from the standpoint of modern
formal logic”

• There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule

if ϕ ⊃ ψ is asserted and ψ is rejected, then ϕ is rejected too.

ä Subsequently, other rejection systems were introduced for
intuitionistic logic, different modal logics, and many-valued logics.

5

Historical Remarks (ctd.)

ä The first system for axiomatic rejection was introduced by Jan
 Lukasiewicz in 1957 in his book

“Aristotle’s syllogistic from the standpoint of modern
formal logic”

• There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule

if ϕ ⊃ ψ is asserted and ψ is rejected, then ϕ is rejected too.

ä Subsequently, other rejection systems were introduced for
intuitionistic logic, different modal logics, and many-valued logics.

5

Relevance of Axiomatic Rejection

ä Complementary calculi are relevant for axiomatising nonmonotonic
logics.

• E.g., default rule “if A and no evidence for B then C” amounts
to inference

` A a B
` C

• Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

å Rejection calculi become relevant in studying proof systems of
nonmonotonic extensions of description logics.

+ Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AIJ, 2013).

6

Relevance of Axiomatic Rejection

ä Complementary calculi are relevant for axiomatising nonmonotonic
logics.

• E.g., default rule “if A and no evidence for B then C” amounts
to inference

` A a B
` C

• Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

å Rejection calculi become relevant in studying proof systems of
nonmonotonic extensions of description logics.

+ Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AIJ, 2013).

6

Relevance of Axiomatic Rejection

ä Complementary calculi are relevant for axiomatising nonmonotonic
logics.

• E.g., default rule “if A and no evidence for B then C” amounts
to inference

` A a B
` C

• Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

å Rejection calculi become relevant in studying proof systems of
nonmonotonic extensions of description logics.

+ Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AIJ, 2013).

6

Relevance of Axiomatic Rejection

ä Complementary calculi are relevant for axiomatising nonmonotonic
logics.

• E.g., default rule “if A and no evidence for B then C” amounts
to inference

` A a B
` C

• Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

å Rejection calculi become relevant in studying proof systems of
nonmonotonic extensions of description logics.

+ Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AIJ, 2013).

6

Relevance of Axiomatic Rejection

ä Complementary calculi are relevant for axiomatising nonmonotonic
logics.

• E.g., default rule “if A and no evidence for B then C” amounts
to inference

` A a B
` C

• Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

å Rejection calculi become relevant in studying proof systems of
nonmonotonic extensions of description logics.

+ Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AIJ, 2013).

6

Description Logic ALC—Syntax

ä The vocabulary of ALC includes the following elements:

• concept names A,B, . . . ,

• role names p, q, r, . . . ,

• individual names a, b, c, . . .,

• concept intersection u,

• concept union t,

• concept negation ¬,

• value restriction ∀,

• existential restriction ∃.

ä Syntax of ALC-concepts:

C ::= A | C u C | C t C | ¬C | ∃r.C | ∀r.C | ⊥ | >

• A denotes a concept name, while r denotes a role name,

7

Description Logic ALC—Syntax

ä The vocabulary of ALC includes the following elements:

• concept names A,B, . . . ,

• role names p, q, r, . . . ,

• individual names a, b, c, . . .,

• concept intersection u,

• concept union t,

• concept negation ¬,

• value restriction ∀,

• existential restriction ∃.

ä Syntax of ALC-concepts:

C ::= A | C u C | C t C | ¬C | ∃r.C | ∀r.C | ⊥ | >

• A denotes a concept name, while r denotes a role name,

7

Description Logic ALC—Syntax

ä The vocabulary of ALC includes the following elements:

• concept names A,B, . . . ,

• role names p, q, r, . . . ,

• individual names a, b, c, . . .,

• concept intersection u,

• concept union t,

• concept negation ¬,

• value restriction ∀,

• existential restriction ∃.

ä Syntax of ALC-concepts:

C ::= A | C u C | C t C | ¬C | ∃r.C | ∀r.C | ⊥ | >

• A denotes a concept name, while r denotes a role name,

7

Description Logic ALC—Semantics

ä An interpretation is a pair I = 〈∆I , ·I〉, where
• ∆I is a non-empty set, called domain,

• ·I is a mapping ensuring that
– every concept name A is mapped to some subset
AI ⊆ ∆I ,

– every role name r is mapped to a binary relation
rI ⊆ ∆I ×∆I .

• ·I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by

– (∀r.C)I = {x | ∀y : (x, y) ∈ rI ⇒ y ∈ CI},
– (∃r.C)I = {x | ∃y : (x, y) ∈ rI and y ∈ CI}.

That is:
(∀r.C) corresponds to ∀y(R(x, y) ⊃ C(y));
(∃r.C) corresponds to ∃y(R(x, y) ∧ C(y)).

ä A concept C is satisfiable iff there exists a finite tree-shaped
interpretation T such that v0 ∈ CT , where v0 is the root of T .

8

Description Logic ALC—Semantics

ä An interpretation is a pair I = 〈∆I , ·I〉, where
• ∆I is a non-empty set, called domain,

• ·I is a mapping ensuring that
– every concept name A is mapped to some subset
AI ⊆ ∆I ,

– every role name r is mapped to a binary relation
rI ⊆ ∆I ×∆I .

• ·I satisfies the usual truth conditions concerning the concept
constructors;

the semantics of the quantifiers is given by
– (∀r.C)I = {x | ∀y : (x, y) ∈ rI ⇒ y ∈ CI},
– (∃r.C)I = {x | ∃y : (x, y) ∈ rI and y ∈ CI}.

That is:
(∀r.C) corresponds to ∀y(R(x, y) ⊃ C(y));
(∃r.C) corresponds to ∃y(R(x, y) ∧ C(y)).

ä A concept C is satisfiable iff there exists a finite tree-shaped
interpretation T such that v0 ∈ CT , where v0 is the root of T .

8

Description Logic ALC—Semantics

ä An interpretation is a pair I = 〈∆I , ·I〉, where
• ∆I is a non-empty set, called domain,

• ·I is a mapping ensuring that
– every concept name A is mapped to some subset
AI ⊆ ∆I ,

– every role name r is mapped to a binary relation
rI ⊆ ∆I ×∆I .

• ·I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by

– (∀r.C)I = {x | ∀y : (x, y) ∈ rI ⇒ y ∈ CI},
– (∃r.C)I = {x | ∃y : (x, y) ∈ rI and y ∈ CI}.

That is:
(∀r.C) corresponds to ∀y(R(x, y) ⊃ C(y));
(∃r.C) corresponds to ∃y(R(x, y) ∧ C(y)).

ä A concept C is satisfiable iff there exists a finite tree-shaped
interpretation T such that v0 ∈ CT , where v0 is the root of T .

8

Description Logic ALC—Semantics

ä An interpretation is a pair I = 〈∆I , ·I〉, where
• ∆I is a non-empty set, called domain,

• ·I is a mapping ensuring that
– every concept name A is mapped to some subset
AI ⊆ ∆I ,

– every role name r is mapped to a binary relation
rI ⊆ ∆I ×∆I .

• ·I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by

– (∀r.C)I = {x | ∀y : (x, y) ∈ rI ⇒ y ∈ CI},
– (∃r.C)I = {x | ∃y : (x, y) ∈ rI and y ∈ CI}.

That is:
(∀r.C) corresponds to ∀y(R(x, y) ⊃ C(y));
(∃r.C) corresponds to ∃y(R(x, y) ∧ C(y)).

ä A concept C is satisfiable iff there exists a finite tree-shaped
interpretation T such that v0 ∈ CT , where v0 is the root of T .

8

Description Logic ALC—Semantics (ctd.)

ä A general concept inclusion (GCI) is an expression of the form
C v D, where C and D are concepts.

ä An interpretation I satisfies a GCI C v D iff CI ⊆ DI .

ä A concept D subsumes a concept C if every interpretation satisfies
the GCI C v D.

å In what follows, we introduce the sequential rejection system
SCc
ALC which axiomatises non-subsumption.

9

Description Logic ALC—Semantics (ctd.)

ä A general concept inclusion (GCI) is an expression of the form
C v D, where C and D are concepts.

ä An interpretation I satisfies a GCI C v D iff CI ⊆ DI .

ä A concept D subsumes a concept C if every interpretation satisfies
the GCI C v D.

å In what follows, we introduce the sequential rejection system
SCc
ALC which axiomatises non-subsumption.

9

Description Logic ALC—Semantics (ctd.)

ä A general concept inclusion (GCI) is an expression of the form
C v D, where C and D are concepts.

ä An interpretation I satisfies a GCI C v D iff CI ⊆ DI .

ä A concept D subsumes a concept C if every interpretation satisfies
the GCI C v D.

å In what follows, we introduce the sequential rejection system
SCc
ALC which axiomatises non-subsumption.

9

Description Logic ALC—Semantics (ctd.)

ä A general concept inclusion (GCI) is an expression of the form
C v D, where C and D are concepts.

ä An interpretation I satisfies a GCI C v D iff CI ⊆ DI .

ä A concept D subsumes a concept C if every interpretation satisfies
the GCI C v D.

å In what follows, we introduce the sequential rejection system
SCc
ALC which axiomatises non-subsumption.

9

Rejection Calculus SCc
ALC

ä An anti-sequent is a pair Γ a ∆, where Γ and ∆ are finite multi-sets
of concepts.

ä An interpretation refutes an anti-sequent Γ a ∆ if it does not satisfy
the GCI l

γ∈Γ

γ v
⊔
δ∈∆

δ;

(the empty concept intersection is >; the empty concept union is ⊥).

10

Rejection Calculus SCc
ALC

ä An anti-sequent is a pair Γ a ∆, where Γ and ∆ are finite multi-sets
of concepts.

ä An interpretation refutes an anti-sequent Γ a ∆ if it does not satisfy
the GCI l

γ∈Γ

γ v
⊔
δ∈∆

δ;

(the empty concept intersection is >; the empty concept union is ⊥).

10

Rejection Calculus SCc
ALC (ctd.)

ä Axioms of SCc
ALC :

• any anti-sequent
Γ0 a ∆0

s.t. Γ0 ∩∆0 = ∅, where Γ0 and ∆0 consist of concept names
only;

• any anti-sequent of form

∀r1.Γ1, . . . ,∀rn.Γn a ∃r1.∆1, . . . ,∃rn.∆n.

ä Structural Rules:

Γ, C a ∆
(w−1, l)Γ a ∆

Γ a ∆, C
(w−1, r)Γ a ∆

Γ, C a ∆
(c−1, l)Γ, C, C a ∆

Γ a C,∆
(c−1, r)Γ a C,C,∆

11

Rejection Calculus SCc
ALC (ctd.)

ä Axioms of SCc
ALC :

• any anti-sequent
Γ0 a ∆0

s.t. Γ0 ∩∆0 = ∅, where Γ0 and ∆0 consist of concept names
only;

• any anti-sequent of form

∀r1.Γ1, . . . ,∀rn.Γn a ∃r1.∆1, . . . ,∃rn.∆n.

ä Structural Rules:

Γ, C a ∆
(w−1, l)Γ a ∆

Γ a ∆, C
(w−1, r)Γ a ∆

Γ, C a ∆
(c−1, l)Γ, C, C a ∆

Γ a C,∆
(c−1, r)Γ a C,C,∆

11

Rejection Calculus SCc
ALC (ctd.)

ä Propositional Rules:

Γ, C,D a ∆
(u, l)

Γ, C uD a ∆
Γ a C,D,∆

(t, r)
Γ a C tD,∆

Γ, C a ∆
(t, l)1Γ, C tD a ∆

Γ a C,∆
(u, r)1Γ a C uD,∆

Γ, D a ∆
(t, l)2Γ, C tD a ∆

Γ a D,∆
(u, r)2Γ a C uD,∆

Γ a C,∆
(¬, l)

Γ,¬C a ∆
Γ, C a ∆

(¬, r)
Γ a ¬C,∆

Γ a ∆ (>)
Γ,> a ∆

Γ a ∆ (⊥)
Γ a ⊥,∆

12

Rejection Calculus SCc
ALC (ctd.)

ä Quantifier Rules:

Γ0 a ∆0 Γr1 , . . . ,Γrn a ∆r1 , . . . ,∆rn

(Mix),
Γ0,Γr1 , . . . ,Γrn a ∆0,∆r1 , . . . ,∆rn

where Γ0 a ∆0 is a propositional axiom.

Γ̂rk a ∆̃rk , Ck · · · Γ̂rl a ∆̃rl , Cl Γr1 , . . . ,Γrn a ∆r1 , . . . ,∆rn

(Mix,∀)
Γr1 , . . . ,Γrn a ∆r1 , . . . ,∆rn ,∀rk.Ck, . . . ,∀rl.Cl

Γ̂rk , Ck a ∆̃rk · · · Γ̂rl , Cl a ∆̃rl Γr1 , . . . ,Γrn a ∆r1 , . . . ,∆rn

(Mix,∃)
Γr1 , . . . ,Γrn ,∃rk.Ck, . . . ,∃rl.Cl a ∆r1 , . . . ,∆rn

where 1 ≤ k ≤ l ≤ n.

ä Notation:

• Γr denotes any finite multi-set of concepts containing only
concepts of form ∃r.C or ∀r.C.

• Γ̂ := {C | ∀r.C ∈ Γ} and Γ̃ := {C | ∃r.C ∈ Γ}.
13

Properties of SCc
ALC

ä SCc
ALC is an analytic calculus, i.e., it enjoys the subformula

property.

ä SCc
ALC is sound and complete, i.e.,

• an anti-sequent Γ a ∆ is refutable iff it is provable in SCc
ALC .

ä Countermodels (in the form of tree models) can be extracted from a
proof in SCc

ALC :

• Assigning, from bottom to top, each anti-sequent in the proof a
node of the tree.

• The end-sequent is the root of the tree.

• New nodes are created for each application of (Mix, ∀) and
(Mix,∃).

• For an axiom Γ0 a ∆0 with assigned node v′, we ensure that

– v′ ∈ CI for each C ∈ Γ0 and

– v′ 6∈ DI for each D ∈ ∆0.

14

Properties of SCc
ALC

ä SCc
ALC is an analytic calculus, i.e., it enjoys the subformula

property.

ä SCc
ALC is sound and complete, i.e.,

• an anti-sequent Γ a ∆ is refutable iff it is provable in SCc
ALC .

ä Countermodels (in the form of tree models) can be extracted from a
proof in SCc

ALC :

• Assigning, from bottom to top, each anti-sequent in the proof a
node of the tree.

• The end-sequent is the root of the tree.

• New nodes are created for each application of (Mix, ∀) and
(Mix,∃).

• For an axiom Γ0 a ∆0 with assigned node v′, we ensure that

– v′ ∈ CI for each C ∈ Γ0 and

– v′ 6∈ DI for each D ∈ ∆0.

14

Properties of SCc
ALC

ä SCc
ALC is an analytic calculus, i.e., it enjoys the subformula

property.

ä SCc
ALC is sound and complete, i.e.,

• an anti-sequent Γ a ∆ is refutable iff it is provable in SCc
ALC .

ä Countermodels (in the form of tree models) can be extracted from a
proof in SCc

ALC :

• Assigning, from bottom to top, each anti-sequent in the proof a
node of the tree.

• The end-sequent is the root of the tree.

• New nodes are created for each application of (Mix, ∀) and
(Mix,∃).

• For an axiom Γ0 a ∆0 with assigned node v′, we ensure that

– v′ ∈ CI for each C ∈ Γ0 and

– v′ 6∈ DI for each D ∈ ∆0.

14

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Example: Extracting a Counter Model

We refute ∃r.C u ∃r.D v ∃r.(C uD).

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(Mix,∃)
∃r.C a ∃r.(C uD)

(Mix,∃)
∃r.C, ∃r.D a ∃r.(C uD)

(u, l)
∃r.C u ∃r.D a ∃r.(C uD)

I = 〈{v0, v1, v2}, ·I〉, rI = {(v0, v1), (v0, v2)}, CI = {v1}, DI = {v2}.

v0

v1C

r

v2 D

r

=⇒ (∃r.C u ∃r.D)I = {v0} but (∃r.(C uD))I = ∅.

15

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

Relation to Tableau Algorithms

ä Tableau algorithms are the most common reasoning procedures for
description logics.

ä They rely on the construction of a canonical model which witnesses
the satisfiability of a concept or a knowledge base.

ä Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a completion graph.

å A model can be extracted from a complete completion graph.

ä A complete completion graph can be obtained from a proof in
SCc
ALC .

+ Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise
satisfiability

å they therefore correspond to a rejection calculus.

16

A Rejection Calculus for Multi-Modal Logic K

ä ALC can be translated into a multi-modal version of the modal
logic K.

ä Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

ä In multi-modal K, we have different modal operators [α], where α is
a modality.

• Semantically, multi-modal K is based on Kripke models
M = 〈W, {Rα}α∈τ , V 〉, where

– W is a non-empty set of worlds,

– Rα ⊆W ×W defines an accessibility relation for each
modality α, and

– V defines which propositional variables are true at which
worlds.

17

A Rejection Calculus for Multi-Modal Logic K

ä ALC can be translated into a multi-modal version of the modal
logic K.

ä Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

ä In multi-modal K, we have different modal operators [α], where α is
a modality.

• Semantically, multi-modal K is based on Kripke models
M = 〈W, {Rα}α∈τ , V 〉, where

– W is a non-empty set of worlds,

– Rα ⊆W ×W defines an accessibility relation for each
modality α, and

– V defines which propositional variables are true at which
worlds.

17

A Rejection Calculus for Multi-Modal Logic K

ä ALC can be translated into a multi-modal version of the modal
logic K.

ä Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

ä In multi-modal K, we have different modal operators [α], where α is
a modality.

• Semantically, multi-modal K is based on Kripke models
M = 〈W, {Rα}α∈τ , V 〉, where

– W is a non-empty set of worlds,

– Rα ⊆W ×W defines an accessibility relation for each
modality α, and

– V defines which propositional variables are true at which
worlds.

17

A Rejection Calculus for Multi-Modal Logic K

ä ALC can be translated into a multi-modal version of the modal
logic K.

ä Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

ä In multi-modal K, we have different modal operators [α], where α is
a modality.

• Semantically, multi-modal K is based on Kripke models
M = 〈W, {Rα}α∈τ , V 〉, where

– W is a non-empty set of worlds,

– Rα ⊆W ×W defines an accessibility relation for each
modality α, and

– V defines which propositional variables are true at which
worlds.

17

A Rejection Calculus for Multi-Modal Logic K (ctd.)

ä The translation of ALC into multi-modal K is simply by viewing
concepts of form ∀r.C as modal formulae of form [α]C ′,

• C ′ is the corresponding translation of the concept C,

• each role name corresponds to one and only one modality.

ä Based on this translation, we can directly translate our calculus into
corresponding modal rules.

ä For instance, the rule (Mix) becomes

Γ0 a ∆0 [α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n (Mix)
Γ0, [α1]Γ1, . . . , [αn]Γn a ∆0, [α1]∆1, . . . , [αn]∆n

where

• Γ0, ∆0 are disjoint sets of propositional variables and

• [α]Γ := {[α]ϕ | ϕ ∈ Γ}.

18

A Rejection Calculus for Multi-Modal Logic K (ctd.)

ä The translation of ALC into multi-modal K is simply by viewing
concepts of form ∀r.C as modal formulae of form [α]C ′,

• C ′ is the corresponding translation of the concept C,

• each role name corresponds to one and only one modality.

ä Based on this translation, we can directly translate our calculus into
corresponding modal rules.

ä For instance, the rule (Mix) becomes

Γ0 a ∆0 [α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n (Mix)
Γ0, [α1]Γ1, . . . , [αn]Γn a ∆0, [α1]∆1, . . . , [αn]∆n

where

• Γ0, ∆0 are disjoint sets of propositional variables and

• [α]Γ := {[α]ϕ | ϕ ∈ Γ}.

18

A Rejection Calculus for Multi-Modal Logic K (ctd.)

ä The translation of ALC into multi-modal K is simply by viewing
concepts of form ∀r.C as modal formulae of form [α]C ′,

• C ′ is the corresponding translation of the concept C,

• each role name corresponds to one and only one modality.

ä Based on this translation, we can directly translate our calculus into
corresponding modal rules.

ä For instance, the rule (Mix) becomes

Γ0 a ∆0 [α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n (Mix)
Γ0, [α1]Γ1, . . . , [αn]Γn a ∆0, [α1]∆1, . . . , [αn]∆n

where

• Γ0, ∆0 are disjoint sets of propositional variables and

• [α]Γ := {[α]ϕ | ϕ ∈ Γ}.

18

Conclusion

ä We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

• Rejection proofs are witnesses for tree-like counterexamples.

ä Future work:

• Provide a calculus for the general case of dealing with reasoning
from knowledge bases, i.e., taking TBox reasoning into account.

• Study calculi for nonmonotonic extensions of description logics.

• Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

– E.g., by effects of simulating versions of the cut rule.

19

Conclusion

ä We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

• Rejection proofs are witnesses for tree-like counterexamples.

ä Future work:

• Provide a calculus for the general case of dealing with reasoning
from knowledge bases, i.e., taking TBox reasoning into account.

• Study calculi for nonmonotonic extensions of description logics.

• Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

– E.g., by effects of simulating versions of the cut rule.

19

Conclusion

ä We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

• Rejection proofs are witnesses for tree-like counterexamples.

ä Future work:

• Provide a calculus for the general case of dealing with reasoning
from knowledge bases, i.e., taking TBox reasoning into account.

• Study calculi for nonmonotonic extensions of description logics.

• Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

– E.g., by effects of simulating versions of the cut rule.

19

Conclusion

ä We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

• Rejection proofs are witnesses for tree-like counterexamples.

ä Future work:

• Provide a calculus for the general case of dealing with reasoning
from knowledge bases, i.e., taking TBox reasoning into account.

• Study calculi for nonmonotonic extensions of description logics.

• Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

– E.g., by effects of simulating versions of the cut rule.

19

Conclusion

ä We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

• Rejection proofs are witnesses for tree-like counterexamples.

ä Future work:

• Provide a calculus for the general case of dealing with reasoning
from knowledge bases, i.e., taking TBox reasoning into account.

• Study calculi for nonmonotonic extensions of description logics.

• Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

– E.g., by effects of simulating versions of the cut rule.

19

