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» But we can also have a complementary view:

e Instead of axiomatising the valid sentences we may axiomatise
the ones.

e In such a system, false propositions are deduced from other
(elementary) false ones.

= Calculi axiomatising the invalid sentences of a logic are called
or



Context (ctd.)

“Ich bin der Geist der stets verneint!
Und das mit Recht; denn alles, was entsteht,
Ist wert, dass es zugrunde geht.”

("1 am the spirit, ever, that denies!
And rightly so; since everything created,
In turn deserves to be annihilated.”)

—J.W. von Goethe, Faust |
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» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.

» Our calculus axiomatises .
e That is, a sequent C' - D is provable in our calculus iff C' = D
does not hold.
» We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.
» Finally, we also obtain a calculus for the
by the relation of ALC with this logic

= generalises a rejection calculus for standard K by Goranko
(1994).
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of logical fallacies in On Sophistical Refutations of the Organon.
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Historical Remarks (ctd.)

» The first system for axiomatic rejection was introduced by
in 1957 in his book
“Aristotle’s syllogistic from the standpoint of modern
formal logic”

e There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule

» Subsequently, other rejection systems were introduced for
intuitionistic logic, different modal logics, and many-valued logics.
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» Complementary calculi are relevant for axiomatising

e Eg, “if A and no evidence for B then C” amounts
to inference

HA 1B
FC

e Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

= Rejection calculi become relevant in studying proof systems of

Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AlJ, 2013).
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Description Logic ALC—Syntax

» The vocabulary of ALC includes the following elements:
e concept names A, B, ...,
e role names p,q,7,...,
e individual names a,b,c, ...,
e concept intersection I,
e concept union L,
e concept negation —,
e value restriction V,

e existential restriction 3.

» Syntax of ALC-concepts:
C:=A|CcnCc|cucC|-C|3arC

Vr.C | L|T

e A denotes a concept name, while r denotes a role name,
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Description Logic ALC—Semantics

> An is a pair Z = (A%, 1), where
e A” is a non-empty set, called ,
e L is a mapping ensuring that
— every concept name A is mapped to some subset
AT C AT,

— every role name r is mapped to a binary relation
T C AT x AT,
e I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by
- (vr.0) ={z|Vy: (, I)EI =y € CT},
- 3.0V ={z|3y: (z,y) € rt and y € C*}.
That is:
(Vr.C') corresponds to Vy(R(x.y) D C(y));
(Jr.C") corresponds to Jy(R(x,y) A C(y)).

» A concept C is satisfiable iff there exists a finite
interpretation 7 such that vy € C7, where vy is the root of 7.
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Description Logic ALC—Semantics (ctd.)

A general concept inclusion (GCI) is an expression of the form
C'C D, where C' and D are concepts.

An interpretation Z satisfies a GCI C' C D iff ct c DL

A concept D subsumes a concept C' if every interpretation satisfies
the GCI C'C D.

In what follows, we introduce the sequential rejection system
SCY ;- which axiomatises non-subsumption.
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Rejection Calculus SCY .

» An is a pair ' 4 A, where " and A are finite multi-sets
of concepts.
» An interpretation an anti-sequent ' 4 A if it does not satisfy
the GCI
[1vc s
el 0EA

(the empty concept intersection is T; the empty concept union is L).
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Rejection Calculus SC% . (ctd.)

» Axioms of SC.:
e any anti-sequent
T'o 1A
s.t. oM Ag = (), where I'y and A consist of concept names
only;

e any anti-sequent of form
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Rejection Calculus SC% . (ctd.)

» Axioms of SC.:
e any anti-sequent
T'o 1A
s.t. oM Ag = (), where I'y and A consist of concept names
only;

e any anti-sequent of form

V’T‘].Fl, e ,Vrn.l“n = HT‘l.Al, ceey ElTnAn

» Structural Rules:
¢ 4 A
I 4 A

r,cHA »
rcc 1Al RN

(w=t1)
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Rejection Calculus SC% . (ctd.)

» Propositional Rules:

T,0,D - A )
T,CND 4 A V7

r,C -4 A
T,CUD 1 A

I,D 4 A
T,CUD 1 A

r 4 CA
T-C 44 0

(|—|> Z)l

(l_l,l)g

r 4 A
744 ("

r 4 0,DA

ERTN N

r 4 CA

racrnpa (hh

I 4 DA

T acrDa (72

ned4a
T 4 -C,A ‘"

r 4 A
F—!L,A(J‘)
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Rejection Calculus SC% . (ctd.)

» Quantifier Rules:

I'p 4 A rm, ..., I 4 A™, ..., ATn
0 ) — - — (MIx),
F()’Fr'....,rl”' = AU,AII7...7A1”
where I'g -1 A is a propositional axiom.
T o A, Cp -~ Tt 4 AT T, T A AT AT
k ]’WC}" : l I’Cl : , s , s (AIIX’V)
rm ...,T™ 4 A", ..., A" Vr,.Ck, ..., Vr.C
/?_ o /\7“ 1 — ATL LS AT LS Tn
I're, O AT I're, C AT rr F A , A (RIIX,H)
rre 0 3. Cr,y ..., 3. Cp 4 A™ L AT

where 1 <k <[ <n.
» Notation:

e [ denotes any finite multi-set of concepts containing only
concepts of form Jr.C' or Vr.C.

e [':={C|Vr.CeT}and T :={C|3r.C cT}.
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» SC%pc is an analytic calculus, i.e., it enjoys the subformula
property.
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Properties of SCY ¢

» SC%pc is an analytic calculus, i.e., it enjoys the subformula
property.
» SC¢ ¢ is sound and complete, i.e.,
e an anti-sequent I" -1 A is refutable iff it is provable in SC% ..
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Properties of SC’

» SC% ¢ is an , 1.e., it enjoys the

» SC, ¢ is , e,
e an anti-sequent I" -1 A is refutable iff it is provable in SC% ..

» Countermodels (in the form of tree models) can be extracted from a
proof in SC% pc:

e Assigning, from bottom to top, each anti-sequent in the proof a
node of the tree.

e The end-sequent is the root of the tree.
e New nodes are created for each application of (Mix, V) and
(Mix, 3).
e For an axiom I'y -1 Ay with assigned node v/, we ensure that
— v/ € C7 for each C' € Iy and
— o' & D” for each D € A,.

14
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= A model can be extracted from a complete completion graph.

A complete completion graph can be obtained from a proof in
SClce-

Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise

= they therefore correspond to a rejection calculus.
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A Rejection Calculus for Multi-Modal Logic K

» ALC can be translated into a multi-modal version of the modal
logic K.

» Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

» In multi-modal K, we have different modal operators [, where « is
a modality.

e Semantically, multi-modal K is based on Kripke models
M = (W, {Ruy}aer, V), where
— W is a non-empty set of
— Ry, CW x W defines an for each
modality «, and
— V defines which propositional variables are true at which
worlds.

17
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A Rejection Calculus for Multi-Modal Logic K (ctd.)

» The translation of ALC into multi-modal K is simply by viewing
concepts of form Vr.C' as modal formulae of form [a]C",

e (' is the corresponding translation of the concept C,

e each role name corresponds to one and only one modality.

» Based on this translation, we can directly translate our calculus into
corresponding modal rules.

» For instance, the rule (MIX) becomes

1"(] 4 A() [(,!1“—‘1
Lo, [0q]Ty,

where

[Ty A Joa]Ar, . [an]A

[anTy A Ag, [aa]Aq, .. [an] Ay

© (MIx)

cee

e [y, A are disjoint sets of propositional variables and
o [ :={[a]e|peTl}.
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Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.

» Future work:

e Provide a calculus for the general case of dealing with

, i.e., taking TBox reasoning into account.

e Study calculi for of description logics.

e Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

— E.g., by effects of simulating versions of the cut rule.

19



