On Axiomatic Rejection
for the Description Logic ALC

Hans Tompits

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group

Joint work with Gerald Berger

Hm




Context

» The traditional view about proof calculi is that they are
—their aim is to axiomatise the of a
logic.



Context

» The traditional view about proof calculi is that they are
—their aim is to axiomatise the of a
logic.

» But we can also have a complementary view:

e Instead of axiomatising the valid sentences we may axiomatise
the ones.



Context

» The traditional view about proof calculi is that they are

—their aim is to axiomatise the

of a
logic.

» But we can also have a complementary view:

e Instead of axiomatising the valid sentences we may axiomatise
the ones.

e In such a system, false propositions are deduced from other
(elementary) false ones.



Context

» The traditional view about proof calculi is that they are

—their aim is to axiomatise the

of a
logic.

» But we can also have a complementary view:

e Instead of axiomatising the valid sentences we may axiomatise
the ones.

e In such a system, false propositions are deduced from other
(elementary) false ones.

= Calculi axiomatising the invalid sentences of a logic are called
or



Context (ctd.)

“Ich bin der Geist der stets verneint!
Und das mit Recht; denn alles, was entsteht,
Ist wert, dass es zugrunde geht.”

("1 am the spirit, ever, that denies!
And rightly so; since everything created,
In turn deserves to be annihilated.”)

—J.W. von Goethe, Faust |



Main Contributions

» We introduce a Gentzen-type rejection systems for description logic

ALC.



Main Contributions

» We introduce a Gentzen-type rejection systems for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for proof
search.



Main Contributions

» We introduce a for description logic
ALC.

e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling



Main Contributions

» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.



Main Contributions
» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.

» Our calculus axiomatises

e That is, a sequent C' - D is provable in our calculus iff C' = D
does not hold.



Main Contributions
» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.

» Our calculus axiomatises .
e That is, a sequent C' - D is provable in our calculus iff C' = D
does not hold.
» We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.



Main Contributions

» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.

» Our calculus axiomatises .
e That is, a sequent C' - D is provable in our calculus iff C' = D
does not hold.
» We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.
» Finally, we also obtain a calculus for the
by the relation of ALC with this logic



Main Contributions

» We introduce a for description logic
ALC.
e Gentzen-type systems are well-known calculi optimised for

e Description logics are important knowledge-representation
languages for modelling
— provide the formal underpinning for semantic-web
reasoning.

» Our calculus axiomatises .
e That is, a sequent C' - D is provable in our calculus iff C' = D
does not hold.
» We also analyse the relationship between our calculus and a
well-known tableau procedure for ALC.
» Finally, we also obtain a calculus for the
by the relation of ALC with this logic

= generalises a rejection calculus for standard K by Goranko
(1994).



Historical Remarks

Investigation of invalid arguments traces back to Aristot/e in his analysis
of logical fallacies in On Sophistical Refutations of the Organon.




Historical Remarks (ctd.)

» The first system for axiomatic rejection was introduced by
in 1957 in his book
“Aristotle’s syllogistic from the standpoint of modern
formal logic”




Historical Remarks (ctd.)

» The first system for axiomatic rejection was introduced by
in 1957 in his book
“Aristotle’s syllogistic from the standpoint of modern
formal logic”

e There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule



Historical Remarks (ctd.)

» The first system for axiomatic rejection was introduced by
in 1957 in his book
“Aristotle’s syllogistic from the standpoint of modern
formal logic”

e There, he axiomatised invalid syllogisms of Aristotle by means
of a Hilbert-type system using the detachment rule

» Subsequently, other rejection systems were introduced for
intuitionistic logic, different modal logics, and many-valued logics.



Relevance of Axiomatic Rejection

» Complementary calculi are relevant for axiomatising nonmonotonic
logics.



Relevance of Axiomatic Rejection

» Complementary calculi are relevant for axiomatising nonmonotonic
logics.

e E.g., default rule "if A and no evidence for B then C"" amounts
to inference

HA 1B
FC



Relevance of Axiomatic Rejection

» Complementary calculi are relevant for axiomatising

e Eg, “if A and no evidence for B then C” amounts
to inference

HA 1B
FC

e Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).



Relevance of Axiomatic Rejection

» Complementary calculi are relevant for axiomatising

e Eg, “if A and no evidence for B then C” amounts
to inference

HA 1B
FC

e Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

= Rejection calculi become relevant in studying proof systems of



Relevance of Axiomatic Rejection

» Complementary calculi are relevant for axiomatising

e Eg, “if A and no evidence for B then C” amounts
to inference

HA 1B
FC

e Indeed, Gentzen-type axiomatisations of central nonmonotonic
logics (like default logic, circumscription, autoepistemic logic)
rely on rejection calculi (Bonatti & Olivetti, 2002).

= Rejection calculi become relevant in studying proof systems of

Nonmonotonic DLs are the topic of recent investigations, e.g.,
by Casini et al. (DL 2013) and Giordano et al. (AlJ, 2013).



Description Logic ALC—Syntax

» The vocabulary of ALC includes the following elements:
e concept names A, B, ...,
e role names p,q,7,...,

e individual names a,b,c, ...,



» The

Description Logic ALC—Syntax

vocabulary of ALC includes the following elements:
concept names A, B, ...,

role names p,q, 7, ...,

individual names a, b, ¢, ...,

concept intersection 1,

concept union L,

concept negation —,

value restriction V,

existential restriction 3.



Description Logic ALC—Syntax

» The vocabulary of ALC includes the following elements:
e concept names A, B, ...,
e role names p,q,7,...,
e individual names a,b,c, ...,
e concept intersection I,
e concept union L,
e concept negation —,
e value restriction V,

e existential restriction 3.

» Syntax of ALC-concepts:
C:=A|CcnCc|cucC|-C|3arC

Vr.C | L|T

e A denotes a concept name, while r denotes a role name,



Description Logic ALC—Semantics

> An is a pair Z = (A%, 1), where
e A” is a non-empty set, called ,
e L is a mapping ensuring that
— every concept name A is mapped to some subset
AT C AT,

— every role name r is mapped to a binary relation
T C AT x AT,



Description Logic ALC—Semantics

> An is a pair Z = (A%, 1), where
e A” is a non-empty set, called ,

e L is a mapping ensuring that
— every concept name A is mapped to some subset

AT C AT,
— every role name r is mapped to a binary relation
T C AT x AT,
e I satisfies the usual truth conditions concerning the concept

constructors;



Description Logic ALC—Semantics

» An interpretation is a pair Z = (A%, -T), where
e A” is a non-empty set, called domain,

e L is a mapping ensuring that

— every concept name A is mapped to some subset
AT C AT,
— every role name r is mapped to a binary relation
T C AT x AT,
e I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by
- (vr.O)Yf ={z|Vy: (x,y) € rt =y € O},
- (IO ={x|Fy: (z,y) €rf and y € CT}.
That is:
(Vr.C') corresponds to Vy(R(x.y) D C(y));
(Jr.C") corresponds to Jy(R(x,y) A C(y)).



Description Logic ALC—Semantics

> An is a pair Z = (A%, 1), where
e A” is a non-empty set, called ,
e L is a mapping ensuring that
— every concept name A is mapped to some subset
AT C AT,

— every role name r is mapped to a binary relation
T C AT x AT,
e I satisfies the usual truth conditions concerning the concept
constructors; the semantics of the quantifiers is given by
- (vr.0) ={z|Vy: (, I)EI =y € CT},
- 3.0V ={z|3y: (z,y) € rt and y € C*}.
That is:
(Vr.C') corresponds to Vy(R(x.y) D C(y));
(Jr.C") corresponds to Jy(R(x,y) A C(y)).

» A concept C is satisfiable iff there exists a finite
interpretation 7 such that vy € C7, where vy is the root of 7.



Description Logic ALC—Semantics (ctd.)

» A general concept inclusion (GCl) is an expression of the form
C'C D, where C' and D are concepts.



Description Logic ALC—Semantics (ctd.)

» A general concept inclusion (GCl) is an expression of the form
C'C D, where C' and D are concepts.

» An interpretation Z satisfies a GCl C'C D iff C7 € D”.



Description Logic ALC—Semantics (ctd.)

» A general concept inclusion (GCl) is an expression of the form
C'C D, where C' and D are concepts.

» An interpretation Z satisfies a GCl C'C D iff C7 € D”.

» A concept D subsumes a concept C' if every interpretation satisfies
the GCI C'C D.



Description Logic ALC—Semantics (ctd.)

A general concept inclusion (GCI) is an expression of the form
C'C D, where C' and D are concepts.

An interpretation Z satisfies a GCI C' C D iff ct c DL

A concept D subsumes a concept C' if every interpretation satisfies
the GCI C'C D.

In what follows, we introduce the sequential rejection system
SCY ;- which axiomatises non-subsumption.



Rejection Calculus SCY .

» An anti-sequent is a pair I' 4 A, where [' and A are finite multi-sets
of concepts.

10



Rejection Calculus SCY .

» An is a pair ' 4 A, where " and A are finite multi-sets
of concepts.
» An interpretation an anti-sequent ' 4 A if it does not satisfy
the GCI
[1vc s
el 0EA

(the empty concept intersection is T; the empty concept union is L).

10



Rejection Calculus SC% . (ctd.)

» Axioms of SC.:
e any anti-sequent
T'o 1A
s.t. oM Ag = (), where I'y and A consist of concept names
only;

e any anti-sequent of form

VT‘].F] g .Vrn.l"‘n = 37‘1.A1. ceey ElTn.An.

11



Rejection Calculus SC% . (ctd.)

» Axioms of SC.:
e any anti-sequent
T'o 1A
s.t. oM Ag = (), where I'y and A consist of concept names
only;

e any anti-sequent of form

V’T‘].Fl, e ,Vrn.l“n = HT‘l.Al, ceey ElTnAn

» Structural Rules:
¢ 4 A
I 4 A

r,cHA »
rcc 1Al RN

(w=t1)

11



Rejection Calculus SC% . (ctd.)

» Propositional Rules:

T,0,D - A )
T,CND 4 A V7

r,C -4 A
T,CUD 1 A

I,D 4 A
T,CUD 1 A

r 4 CA
T-C 44 0

(|—|> Z)l

(l_l,l)g

r 4 A
744 ("

r 4 0,DA

ERTN N

r 4 CA

racrnpa (hh

I 4 DA

T acrDa (72

ned4a
T 4 -C,A ‘"

r 4 A
F—!L,A(J‘)

12



Rejection Calculus SC% . (ctd.)

» Quantifier Rules:

I'p 4 A rm, ..., I 4 A™, ..., ATn
0 ) — - — (MIx),
F()’Fr'....,rl”' = AU,AII7...7A1”
where I'g -1 A is a propositional axiom.
T o A, Cp -~ Tt 4 AT T, T A AT AT
k ]’WC}" : l I’Cl : , s , s (AIIX’V)
rm ...,T™ 4 A", ..., A" Vr,.Ck, ..., Vr.C
/?_ o /\7“ 1 — ATL LS AT LS Tn
I're, O AT I're, C AT rr F A , A (RIIX,H)
rre 0 3. Cr,y ..., 3. Cp 4 A™ L AT

where 1 <k <[ <n.
» Notation:

e [ denotes any finite multi-set of concepts containing only
concepts of form Jr.C' or Vr.C.

e [':={C|Vr.CeT}and T :={C|3r.C cT}.

13



Properties of SCY ¢

» SC%pc is an analytic calculus, i.e., it enjoys the subformula
property.

14



Properties of SCY ¢

» SC%pc is an analytic calculus, i.e., it enjoys the subformula
property.
» SC¢ ¢ is sound and complete, i.e.,
e an anti-sequent I" -1 A is refutable iff it is provable in SC% ..

14



Properties of SC’

» SC% ¢ is an , 1.e., it enjoys the

» SC, ¢ is , e,
e an anti-sequent I" -1 A is refutable iff it is provable in SC% ..

» Countermodels (in the form of tree models) can be extracted from a
proof in SC% pc:

e Assigning, from bottom to top, each anti-sequent in the proof a
node of the tree.

e The end-sequent is the root of the tree.
e New nodes are created for each application of (Mix, V) and
(Mix, 3).
e For an axiom I'y -1 Ay with assigned node v/, we ensure that
— v/ € C7 for each C' € Iy and
— o' & D” for each D € A,.

14



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

miD(m )
DAHC cHonbD ’ —|3T.(CI_ID)

Dacnp (b 5-.C 43-(CT1 D)
Ir.C,3r.D 4 3r.(C 11 D) .
Ir.CN3Ir.DA3Ir.(CID)

(Mix, 3)

(M1x, 3)

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|3T.(C|_ID)

Dacnp (b 5-.C 43-(CT1 D)
Ir.C,3r.D 4 3r.(C 11 D) .
Ir.CN3Ir.DA3Ir.(CID)

(ﬂ, ’I“)Q

(M1x, 3)
(Mix, 3)

Z = {{vo,v1,v2}, %), T = {(vo, v1), (vo,v2)}, CF = {v1}, DT = {wy}.

Vo
N
U1 v2 D

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|3T.(C|_ID)

Dacnp (b 5-.C 43-(CT1 D)
Ir.C,3r.D 4 3r.(C 11 D) .
Ir.CN3Ir.DA3Ir.(CID)

(ﬂ, ’I“)g

(M1x, 3)
(Mix, 3)

Z = {{vo,v1,v2}, %), T = {(vo, v1), (vo,v2)}, CF = {v1}, DT = {wy}.

)
N
v2 D

(3r.C M 3Ir.D)* = {wo} but (3r.(C 1 D)) =0.

C v

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|3T.(C|_ID)

Dacnp (b 5-.C 43-(CT1 D)
Ir.C,3r.D 4 3r.(C 11 D) .
Ir.CN3Ir.D 43I (CTID) 7

(ﬂ, ’I“)Q

(M1x, 3)
(Mix, 3)

Z = {{vo,v1,v2}, %), T = {(vo, v1), (vo,v2)}, CF = {v1}, DT = {wy}.

Vo
N
v2 D

(3r.C M 3Ir.D)* = {wo} but (3r.(C 1 D)) =0.

C v

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|3T.(C|_ID)

Dacnp (b 5-.C 43-(CT1 D)
Ir.C,3r.D 4 Ir.(C 11 D) .
Ir.CN3Ir.D 43I (CTID) 7

(ﬂ, ’I“)Q

(M1x, 3)
(Mix, 3)

Z = {{vo,v1,v2}, %), T = {(vo, v1), (vo,v2)}, CF = {v1}, DT = {wy}.

Vo
N
v2 D

(3r.C M 3Ir.D)* = {wo} but (3r.(C 1 D)) =0.

C v

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|3T.(CI_ID)

(M) 5-.C 43-(CT1 D)
Ir.C,3r.D 4 Ir.(C 11 D) .
Ir.CN3Ir.D 43I (CTID) 7

(ﬂ, ’I“)Q

(M1x, 3)

(Mix, 3)

Z = {{vo,v1,v2}, %), T = {(vo, v1), (vo,v2)}, CF = {v1}, DT = {wy}.

N\

C v

(3r.C M 3Ir.D)* = {wo} but (3r.(C 1 D)) =0.

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CHD
DAHC cHonbD —|E|T.(C|_|D)

bicrnp (vTh 3r.C H3r.(CN D)
Ir.C,3r.D 4 Ir.(C 11 D) .
Ir.CN3Ir.D 43I (CTID) 7

(H,T‘)Q

(M1x, 3)

(Mix, 3)

T = {wo,v1,v2}, ), T = {(vo, v1), (vo,v2)}, CF = {v1}, DF — [vs ).

Vo
N\
()

— (Ir.Cc N 3Ir.D)* = {vy} but (Ir.(C 11 D))T =9.

C v

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

cHD
DiC o, CACOD R el
D-H4Cnb Ir.C43Ir(CND)
Ir.C,3r.D 4 Ir.(C 11 D) (n.1)
Ir.CN3Ir.D 43I (CTID) 7

(M1x, 3)
(Mix, 3)

T = {wo,v1,v2}, ), T = {(vo, v1), (vo,v2)}, CF = {v1}, DF — [vs ).

Yo
N\
()

— (Ir.Cc N 3Ir.D)* = {vy} but (Ir.(C 11 D))T =9.

c v

15



Example: Extracting a Counter Model

We refute 3r.C' M 3r.D C 3r.(C' N D).

CcHD
DIC oy, ccnp 2 45 cnp)
D4ACnD Y7 Ir.C 4 3r.(CN D)
Ir.C,3r.D 4 3Ir.(C 11 D) (n.1)
Ir.CN3Ir.D 43I (CTID) 7

(M1x, 3)
(Mix, 3)

T = {wo,v1,v2}, ), T = {(vo, v1), (vo,v2)}, CF = {v1}, DF = [}

)
N
v2 D

— (Ir.C N 3Ir.D)* = {vo} but (3r.(C 1 D)) =0.

c v

15



Relation to Tableau Algorithms

» Tableau algorithms are the most common reasoning procedures for
description logics.

16



Relation to Tableau Algorithms

» Tableau algorithms are the most common reasoning procedures for
description logics.

» They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

16



Relation to Tableau Algorithms

» Tableau algorithms are the most common reasoning procedures for
description logics.

» They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

» Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a

16



Relation to Tableau Algorithms

» Tableau algorithms are the most common reasoning procedures for
description logics.

» They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

» Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a

= A model can be extracted from a complete completion graph.

16



Relation to Tableau Algorithms

Tableau algorithms are the most common reasoning procedures for
description logics.

They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a

= A model can be extracted from a complete completion graph.

A complete completion graph can be obtained from a proof in
SC%c-

16



Relation to Tableau Algorithms

Tableau algorithms are the most common reasoning procedures for
description logics.

They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a

= A model can be extracted from a complete completion graph.

A complete completion graph can be obtained from a proof in
SClce-

Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise

16



Relation to Tableau Algorithms

Tableau algorithms are the most common reasoning procedures for
description logics.

They rely on the construction of a which witnesses
the satisfiability of a concept or a knowledge base.

Well known algorithm for ALC (Baader & Sattler, 2001) is based on
the notion of a

= A model can be extracted from a complete completion graph.

A complete completion graph can be obtained from a proof in
SClce-

Although tableaux are usually syntactic variants of standard Gentzen
systems, in the case of description logics, tableaux axiomatise

= they therefore correspond to a rejection calculus.

16



A Rejection Calculus for Multi-Modal Logic K

» ALC can be translated into a multi-modal version of the modal
logic K.

17



A Rejection Calculus for Multi-Modal Logic K

» ALC can be translated into a multi-modal version of the modal
logic K.
» Based on this translation, we obtain a rejection calculus for

multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

17



A Rejection Calculus for Multi-Modal Logic K

» ALC can be translated into a multi-modal version of the modal
logic K.

» Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

» In multi-modal K, we have different modal operators [, where « is
a modality.

17



A Rejection Calculus for Multi-Modal Logic K

» ALC can be translated into a multi-modal version of the modal
logic K.

» Based on this translation, we obtain a rejection calculus for
multi-modal K, generalising a rejection calculus for standard K by
Goranko (1994).

» In multi-modal K, we have different modal operators [, where « is
a modality.

e Semantically, multi-modal K is based on Kripke models
M = (W, {Ruy}aer, V), where
— W is a non-empty set of
— Ry, CW x W defines an for each
modality «, and
— V defines which propositional variables are true at which
worlds.

17



A Rejection Calculus for Multi-Modal Logic K (ctd.)

» The translation of ALC into multi-modal K is simply by viewing
concepts of form Vr.C' as modal formulae of form [a]C",

e (' is the corresponding translation of the concept C,

e each role name corresponds to one and only one modality.

18



A Rejection Calculus for Multi-Modal Logic K (ctd.)

» The translation of ALC into multi-modal K is simply by viewing
concepts of form Vr.C' as modal formulae of form [a]C",

e (' is the corresponding translation of the concept C,

e each role name corresponds to one and only one modality.

» Based on this translation, we can directly translate our calculus into
corresponding modal rules.

18



A Rejection Calculus for Multi-Modal Logic K (ctd.)

» The translation of ALC into multi-modal K is simply by viewing
concepts of form Vr.C' as modal formulae of form [a]C",

e (' is the corresponding translation of the concept C,

e each role name corresponds to one and only one modality.

» Based on this translation, we can directly translate our calculus into
corresponding modal rules.

» For instance, the rule (MIX) becomes

1"(] 4 A() [(,!1“—‘1
Lo, [0q]Ty,

where

[Ty A Joa]Ar, . [an]A

[anTy A Ag, [aa]Aq, .. [an] Ay

© (MIx)

cee

e [y, A are disjoint sets of propositional variables and
o [ :={[a]e|peTl}.

18



Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.

19



Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.
» Future work:

e Provide a calculus for the general case of dealing with
, i.e., taking TBox reasoning into account.

19



Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.

» Future work:

e Provide a calculus for the general case of dealing with

, i.e., taking TBox reasoning into account.

e Study calculi for of description logics.

19



Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.

» Future work:

e Provide a calculus for the general case of dealing with

, i.e., taking TBox reasoning into account.

e Study calculi for of description logics.

e Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

19



Conclusion

» We presented a sound and complete rejection system axiomatising
non-subsumption in ALC.

e Rejection proofs are witnesses for tree-like counterexamples.

» Future work:

e Provide a calculus for the general case of dealing with

, i.e., taking TBox reasoning into account.

e Study calculi for of description logics.

e Can a combination of traditional proof methods and rejection
calculi yield potentially more efficient reasoning systems?

— E.g., by effects of simulating versions of the cut rule.

19



