1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
------------------------------------------------------------------------------
--- Library for pseudo-random number generation in Curry.
---
--- This library provides operations for generating pseudo-random
--- number sequences.
--- For any given seed, the sequences generated by the operations
--- in this module should be **identical** to the sequences
--- generated by the `java.util.Random package`.
---
------------------------------------------------------------------------------
--- The KiCS2 implementation is based on an algorithm taken from
--- <http://en.wikipedia.org/wiki/Random_number_generation>.
--- There is an assumption that all operations are implicitly
--- executed mod 2^32 (unsigned 32-bit integers) !!!
--- GHC computes between -2^29 and 2^29-1,  thus the sequence
--- is NOT as random as one would like.
---
---     m_w = <choose-initializer>;    /* must not be zero */
---     m_z = <choose-initializer>;    /* must not be zero */
---
---     uint get_random()
---     {
---         m_z = 36969 * (m_z & 65535) + (m_z >> 16);
---         m_w = 18000 * (m_w & 65535) + (m_w >> 16);
---         return (m_z << 16) + m_w;  /* 32-bit result */
---     }
---
------------------------------------------------------------------------------
--- The PAKCS implementation is a linear congruential pseudo-random number
--- generator described in
--- Donald E. Knuth, _The Art of Computer Programming_,
--- Volume 2: _Seminumerical Algorithms_, section 3.2.1.
---
------------------------------------------------------------------------------
--- @author Sergio Antoy (with extensions by Michael Hanus)
--- @version June 2017
--- @category algorithm
------------------------------------------------------------------------------
{-# LANGUAGE CPP #-}

module Random
  ( nextInt, nextIntRange, nextBoolean, getRandomSeed
  , shuffle
  ) where

import System  ( getCPUTime )
import Time


------------------------------------------------------------------
--                       Private Operations
------------------------------------------------------------------

-- a few constants

multiplier :: Int
multiplier = 25214903917

addend     :: Int
addend     = 11

powermask  :: Int
powermask  = 48

mask       :: Int
mask       = 281474976710656  -- 2^powermask

intsize    :: Int
intsize    = 32

intspan    :: Int
intspan    = 4294967296       -- 2^intsize

intlimit   :: Int
intlimit   = 2147483648       -- 2^(intsize-1)

-- the basic sequence of random values

sequence :: Int -> [Int]
sequence seed = next : sequence next
    where next = nextseed seed

-- auxiliary private operations

nextseed :: Int -> Int
nextseed seed = (seed * multiplier + addend) `rem` mask

xor :: Int -> Int -> Int
xor x y = if (x==0) && (y==0) then 0 else lastBit + 2 * restBits
    where lastBit  = if (x `rem` 2) == (y `rem` 2) then 0 else 1
          restBits = xor (x `quot` 2) (y `quot` 2)

power :: Int -> Int -> Int
power base exp = binary 1 base exp
    where binary x b e
              = if (e == 0) then x
                else binary (x * if (e `rem` 2 == 1) then b else 1)
                            (b * b)
                            (e `quot` 2)

nextIntBits :: Int -> Int -> [Int]
nextIntBits seed bits = map adjust list
    where init = (xor seed multiplier) `rem` mask
          list = sequence init
          shift = power 2 (powermask - bits)
          adjust x = if arg > intlimit then arg - intspan
                                       else arg
              where arg = (x `quot` shift) `rem` intspan

















------------------------------------------------------------------
--                       Public Operations
------------------------------------------------------------------

--- Returns a sequence of pseudorandom, integer values.
---
--- @param seed - The seed of the random sequence.

nextInt :: Int -> [Int]

nextInt seed = nextIntBits seed intsize












--- Returns a pseudorandom sequence of values
--- between 0 (inclusive) and the specified value (exclusive).
---
--- @param seed - The seed of the random sequence.
--- @param n - The bound on the random number to be returned.
---            Must be positive.

nextIntRange :: Int -> Int -> [Int]

nextIntRange seed n | n>0
    = if power_of_2 n then map adjust_a seq
      else map adjust_b (filter adjust_c seq)
    where seq = nextIntBits seed (intsize - 1)
          adjust_a x = (n * x) `quot` intlimit
          adjust_b x = x `rem` n
          adjust_c x = x - (x `rem` n) + (n - 1) >= 0
          power_of_2 k = k == 2 ||
                         k > 2 && k `rem` 2 == 0 && power_of_2 (k `quot` 2)





--- Returns a pseudorandom sequence of boolean values.
---
--- @param seed - The seed of the random sequence.

nextBoolean :: Int -> [Bool]

nextBoolean seed = map (/= 0) (nextIntBits seed 1)





--- Returns a time-dependent integer number as a seed for really random numbers.
--- Should only be used as a seed for pseudorandom number sequence
--- and not as a random number since the precision is limited to milliseconds

getRandomSeed :: IO Int
getRandomSeed =
  getClockTime >>= \time ->
  getCPUTime >>= \msecs ->
  let (CalendarTime y mo d h m s _) = toUTCTime time

   in return ((y+mo+d+h+m*s*msecs) `rem` mask)




--- Computes a random permutation of the given list.
---
--- @param rnd random seed
--- @param l lists to shuffle
--- @return shuffled list
---
shuffle :: Int -> [a] -> [a]
shuffle rnd xs = shuffleWithLen (nextInt rnd) (length xs) xs

shuffleWithLen :: [Int] -> Int -> [a] -> [a]
shuffleWithLen [] _ _ =
  error "Internal error in Random.shuffleWithLen"
shuffleWithLen (r:rs) len xs
  | len == 0  = []
  | otherwise = z : shuffleWithLen rs (len-1) (ys++zs)
 where

  (ys,z:zs) = splitAt (abs r `rem` len) xs




{-     Simple tests and examples

testInt = take 20 (nextInt 0)

testIntRange = take 120 (nextIntRange 0 6)

testBoolean = take 20 (nextBoolean 0)

reallyRandom = do seed <- getRandomSeed
                  putStrLn (show (take 20 (nextIntRange seed 100)))
-}