1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
----------------------------------------------------------------------------
--- This library provides selector functions, test and update operations
--- as well as some useful auxiliary functions for FlatCurry data terms.
--- Most of the provided functions are based on general transformation
--- functions that replace constructors with user-defined
--- functions. For recursive datatypes the transformations are defined
--- inductively over the term structure. This is quite usual for
--- transformations on FlatCurry terms,
--- so the provided functions can be used to implement specific transformations
--- without having to explicitly state the recursion. Essentially, the tedious
--- part of such transformations - descend in fairly complex term structures -
--- is abstracted away, which hopefully makes the code more clear and brief.
---
--- @author Sebastian Fischer
--- @version May 2017
--- @category meta
----------------------------------------------------------------------------

module FlatCurry.Goodies where

import FlatCurry.Types

type Update a b = (b -> b) -> a -> a

-- Prog ----------------------------------------------------------------------

--- transform program
trProg :: (String -> [String] -> [TypeDecl] -> [FuncDecl] -> [OpDecl] -> a)
          -> Prog -> a
trProg prog (Prog name imps types funcs ops) = prog name imps types funcs ops

-- Selectors

--- get name from program
progName :: Prog -> String
progName = trProg (\name _ _ _ _ -> name)

--- get imports from program
progImports :: Prog -> [String]
progImports = trProg (\_ imps _ _ _ -> imps)

--- get type declarations from program
progTypes :: Prog -> [TypeDecl]
progTypes = trProg (\_ _ types _ _ -> types)

--- get functions from program
progFuncs :: Prog -> [FuncDecl]
progFuncs = trProg (\_ _ _ funcs _ -> funcs)

--- get infix operators from program
progOps :: Prog -> [OpDecl]
progOps = trProg (\_ _ _ _ ops -> ops)

-- Update Operations

--- update program
updProg :: (String -> String)         ->
           ([String] -> [String])     ->
           ([TypeDecl] -> [TypeDecl]) ->
           ([FuncDecl] -> [FuncDecl]) ->
           ([OpDecl] -> [OpDecl])     -> Prog -> Prog
updProg fn fi ft ff fo = trProg prog
 where
  prog name imps types funcs ops
    = Prog (fn name) (fi imps) (ft types) (ff funcs) (fo ops)

--- update name of program
updProgName :: Update Prog String
updProgName f = updProg f id id id id

--- update imports of program
updProgImports :: Update Prog [String]
updProgImports f = updProg id f id id id

--- update type declarations of program
updProgTypes :: Update Prog [TypeDecl]
updProgTypes f = updProg id id f id id

--- update functions of program
updProgFuncs :: Update Prog [FuncDecl]
updProgFuncs f = updProg id id id f id

--- update infix operators of program
updProgOps :: Update Prog [OpDecl]
updProgOps = updProg id id id id

-- Auxiliary Functions

--- get all program variables (also from patterns)
allVarsInProg :: Prog -> [VarIndex]
allVarsInProg = concatMap allVarsInFunc . progFuncs

--- lift transformation on expressions to program
updProgExps :: Update Prog Expr
updProgExps = updProgFuncs . map . updFuncBody

--- rename programs variables
rnmAllVarsInProg :: Update Prog VarIndex
rnmAllVarsInProg = updProgFuncs . map . rnmAllVarsInFunc

--- update all qualified names in program
updQNamesInProg :: Update Prog QName
updQNamesInProg f = updProg id id
  (map (updQNamesInType f)) (map (updQNamesInFunc f)) (map (updOpName f))

--- rename program (update name of and all qualified names in program)
rnmProg :: String -> Prog -> Prog
rnmProg name p = updProgName (const name) (updQNamesInProg rnm p)
 where
  rnm (mod,n) | mod==progName p = (name,n)
              | otherwise = (mod,n)

-- TypeDecl ------------------------------------------------------------------

-- Selectors

--- transform type declaration
trType :: (QName -> Visibility -> [Int] -> [ConsDecl] -> a) ->
          (QName -> Visibility -> [Int] -> TypeExpr   -> a) -> TypeDecl -> a
trType typ _ (Type name vis params cs) = typ name vis params cs
trType _ typesyn (TypeSyn name vis params syn) = typesyn name vis params syn

--- get name of type declaration
typeName :: TypeDecl -> QName
typeName = trType (\name _ _ _ -> name) (\name _ _ _ -> name)

--- get visibility of type declaration
typeVisibility :: TypeDecl -> Visibility
typeVisibility = trType (\_ vis _ _ -> vis) (\_ vis _ _ -> vis)

--- get type parameters of type declaration
typeParams :: TypeDecl -> [TVarIndex]
typeParams = trType (\_ _ params _ -> params) (\_ _ params _ -> params)

--- get constructor declarations from type declaration
typeConsDecls :: TypeDecl -> [ConsDecl]
typeConsDecls = trType (\_ _ _ cs -> cs) failed

--- get synonym of type declaration
typeSyn :: TypeDecl -> TypeExpr
typeSyn = trType failed (\_ _ _ syn -> syn)

--- is type declaration a type synonym?
isTypeSyn :: TypeDecl -> Bool
isTypeSyn = trType (\_ _ _ _ -> False) (\_ _ _ _ -> True)

-- Update Operations

--- update type declaration
updType :: (QName -> QName) ->
           (Visibility -> Visibility) ->
           ([Int] -> [Int]) ->
           ([ConsDecl] -> [ConsDecl]) ->
           (TypeExpr -> TypeExpr)     -> TypeDecl -> TypeDecl
updType fn fv fp fc fs = trType typ typesyn
 where
  typ name vis params cs = Type (fn name) (fv vis) (fp params) (fc cs)
  typesyn name vis params syn = TypeSyn (fn name) (fv vis) (fp params) (fs syn)

--- update name of type declaration
updTypeName :: Update TypeDecl QName
updTypeName f = updType f id id id id

--- update visibility of type declaration
updTypeVisibility :: Update TypeDecl Visibility
updTypeVisibility f = updType id f id id id

--- update type parameters of type declaration
updTypeParams :: Update TypeDecl [TVarIndex]
updTypeParams f = updType id id f id id

--- update constructor declarations of type declaration
updTypeConsDecls :: Update TypeDecl [ConsDecl]
updTypeConsDecls f = updType id id id f id

--- update synonym of type declaration
updTypeSynonym :: Update TypeDecl TypeExpr
updTypeSynonym = updType id id id id

-- Auxiliary Functions

--- update all qualified names in type declaration
updQNamesInType :: Update TypeDecl QName
updQNamesInType f
  = updType f id id (map (updQNamesInConsDecl f)) (updQNamesInTypeExpr f)

-- ConsDecl ------------------------------------------------------------------

-- Selectors

--- transform constructor declaration
trCons :: (QName -> Int -> Visibility -> [TypeExpr] -> a) -> ConsDecl -> a
trCons cons (Cons name arity vis args) = cons name arity vis args

--- get name of constructor declaration
consName :: ConsDecl -> QName
consName = trCons (\name _ _ _ -> name)

--- get arity of constructor declaration
consArity :: ConsDecl -> Int
consArity = trCons (\_ arity _ _ -> arity)

--- get visibility of constructor declaration
consVisibility :: ConsDecl -> Visibility
consVisibility = trCons (\_ _ vis _ -> vis)

--- get arguments of constructor declaration
consArgs :: ConsDecl -> [TypeExpr]
consArgs = trCons (\_ _ _ args -> args)

-- Update Operations

--- update constructor declaration
updCons :: (QName -> QName) ->
           (Int -> Int) ->
           (Visibility -> Visibility) ->
           ([TypeExpr] -> [TypeExpr]) -> ConsDecl -> ConsDecl
updCons fn fa fv fas = trCons cons
 where
  cons name arity vis args = Cons (fn name) (fa arity) (fv vis) (fas args)

--- update name of constructor declaration
updConsName :: Update ConsDecl QName
updConsName f = updCons f id id id

--- update arity of constructor declaration
updConsArity :: Update ConsDecl Int
updConsArity f = updCons id f id id

--- update visibility of constructor declaration
updConsVisibility :: Update ConsDecl Visibility
updConsVisibility f = updCons id id f id

--- update arguments of constructor declaration
updConsArgs :: Update ConsDecl [TypeExpr]
updConsArgs = updCons id id id

-- Auxiliary Functions

--- update all qualified names in constructor declaration
updQNamesInConsDecl :: Update ConsDecl QName
updQNamesInConsDecl f = updCons f id id (map (updQNamesInTypeExpr f))

-- TypeExpr ------------------------------------------------------------------

-- Selectors

--- get index from type variable
tVarIndex :: TypeExpr -> TVarIndex
tVarIndex texpr = case texpr of
  (TVar n) -> n
  _        -> error "FlatCurryGoodies.tVarIndex: no type variable"

--- get domain from functional type
domain :: TypeExpr -> TypeExpr
domain texpr = case texpr of
  (FuncType dom _) -> dom
  _                -> error "FlatCurryGoodies.domain: no functional type"

--- get range from functional type
range :: TypeExpr -> TypeExpr
range texpr = case texpr of
  (FuncType _ ran) -> ran
  _                -> error "FlatCurryGoodies.range: no functional type"

--- get name from constructed type
tConsName :: TypeExpr -> QName
tConsName texpr = case texpr of
  (TCons name _) -> name
  _              -> error "FlatCurryGoodies.tConsName: no constructed type"

--- get arguments from constructed type
tConsArgs :: TypeExpr -> [TypeExpr]
tConsArgs texpr = case texpr of
  (TCons _ args) -> args
  _              -> error "FlatCurryGoodies.tConsArgs: no constructed type"

--- transform type expression
trTypeExpr :: (Int -> a) ->
              (QName -> [a] -> a) ->
              (a -> a -> a) ->
              ([TVarIndex] -> a -> a) -> TypeExpr -> a
trTypeExpr tvar _ _ _ (TVar n) = tvar n
trTypeExpr tvar tcons functype foralltype (TCons name args)
  = tcons name (map (trTypeExpr tvar tcons functype foralltype) args)
trTypeExpr tvar tcons functype foralltype (FuncType from to)
  = functype (f from) (f to)
 where
  f = trTypeExpr tvar tcons functype foralltype
trTypeExpr tvar tcons functype foralltype (ForallType ns t)
  = foralltype ns (trTypeExpr tvar tcons functype foralltype t)

-- Test Operations

--- is type expression a type variable?
isTVar :: TypeExpr -> Bool
isTVar = trTypeExpr (\_ -> True) (\_ _ -> False) (\_ _ -> False) (\_ _ -> False)

--- is type declaration a constructed type?
isTCons :: TypeExpr -> Bool
isTCons
  = trTypeExpr (\_ -> False) (\_ _ -> True) (\_ _ -> False) (\_ _ -> False)

--- is type declaration a functional type?
isFuncType :: TypeExpr -> Bool
isFuncType
  = trTypeExpr (\_ -> False) (\_ _ -> False) (\_ _ -> True) (\_ _ -> False)

--- is type declaration a forall type?
isForallType :: TypeExpr -> Bool
isForallType
  = trTypeExpr (\_ -> False) (\_ _ -> False) (\_ _ -> False) (\_ _ -> True)

-- Update Operations

--- update all type variables
updTVars :: (Int -> TypeExpr) -> TypeExpr -> TypeExpr
updTVars tvar = trTypeExpr tvar TCons FuncType ForallType

--- update all type constructors
updTCons :: (QName -> [TypeExpr] -> TypeExpr) -> TypeExpr -> TypeExpr
updTCons tcons = trTypeExpr TVar tcons FuncType ForallType

--- update all functional types
updFuncTypes :: (TypeExpr -> TypeExpr -> TypeExpr) -> TypeExpr -> TypeExpr
updFuncTypes functype = trTypeExpr TVar TCons functype ForallType

--- update all forall types
updForallTypes :: ([Int] -> TypeExpr -> TypeExpr) -> TypeExpr -> TypeExpr
updForallTypes = trTypeExpr TVar TCons FuncType

-- Auxiliary Functions

--- get argument types from functional type
argTypes :: TypeExpr -> [TypeExpr]
argTypes (TVar _) = []
argTypes (TCons _ _) = []
argTypes (FuncType dom ran) = dom : argTypes ran
argTypes (ForallType _ _) = []

--- get result type from (nested) functional type
resultType :: TypeExpr -> TypeExpr
resultType (TVar n) = TVar n
resultType (TCons name args) = TCons name args
resultType (FuncType _ ran) = resultType ran
resultType (ForallType ns t) = ForallType ns t

--- rename variables in type expression
rnmAllVarsInTypeExpr :: (Int -> Int) -> TypeExpr -> TypeExpr
rnmAllVarsInTypeExpr f = updTVars (TVar . f)

--- update all qualified names in type expression
updQNamesInTypeExpr :: (QName -> QName) -> TypeExpr -> TypeExpr
updQNamesInTypeExpr f = updTCons (\name args -> TCons (f name) args)

-- OpDecl --------------------------------------------------------------------

--- transform operator declaration
trOp :: (QName -> Fixity -> Int -> a) -> OpDecl -> a
trOp op (Op name fix prec) = op name fix prec

-- Selectors

--- get name from operator declaration
opName :: OpDecl -> QName
opName = trOp (\name _ _ -> name)

--- get fixity of operator declaration
opFixity :: OpDecl -> Fixity
opFixity = trOp (\_ fix _ -> fix)

--- get precedence of operator declaration
opPrecedence :: OpDecl -> Int
opPrecedence = trOp (\_ _ prec -> prec)

-- Update Operations

--- update operator declaration
updOp :: (QName -> QName) ->
         (Fixity -> Fixity) ->
         (Int -> Int)       -> OpDecl -> OpDecl
updOp fn ff fp = trOp op
 where
  op name fix prec = Op (fn name) (ff fix) (fp prec)

--- update name of operator declaration
updOpName :: Update OpDecl QName
updOpName f = updOp f id id

--- update fixity of operator declaration
updOpFixity :: Update OpDecl Fixity
updOpFixity f = updOp id f id

--- update precedence of operator declaration
updOpPrecedence :: Update OpDecl Int
updOpPrecedence = updOp id id

-- FuncDecl ------------------------------------------------------------------

--- transform function
trFunc :: (QName -> Int -> Visibility -> TypeExpr -> Rule -> a) -> FuncDecl -> a
trFunc func (Func name arity vis t rule) = func name arity vis t rule

-- Selectors

--- get name of function
funcName :: FuncDecl -> QName
funcName = trFunc (\name _ _ _ _ -> name)

--- get arity of function
funcArity :: FuncDecl -> Int
funcArity = trFunc (\_ arity _ _ _ -> arity)

--- get visibility of function
funcVisibility :: FuncDecl -> Visibility
funcVisibility = trFunc (\_ _ vis _ _ -> vis)

--- get type of function
funcType :: FuncDecl -> TypeExpr
funcType = trFunc (\_ _ _ t _ -> t)

--- get rule of function
funcRule :: FuncDecl -> Rule
funcRule = trFunc (\_ _ _ _ rule -> rule)

-- Update Operations

--- update function
updFunc :: (QName -> QName) ->
           (Int -> Int) ->
           (Visibility -> Visibility) ->
           (TypeExpr -> TypeExpr) ->
           (Rule -> Rule)             -> FuncDecl -> FuncDecl
updFunc fn fa fv ft fr = trFunc func
 where
  func name arity vis t rule
    = Func (fn name) (fa arity) (fv vis) (ft t) (fr rule)

--- update name of function
updFuncName :: Update FuncDecl QName
updFuncName f = updFunc f id id id id

--- update arity of function
updFuncArity :: Update FuncDecl Int
updFuncArity f = updFunc id f id id id

--- update visibility of function
updFuncVisibility :: Update FuncDecl Visibility
updFuncVisibility f = updFunc id id f id id

--- update type of function
updFuncType :: Update FuncDecl TypeExpr
updFuncType f = updFunc id id id f id

--- update rule of function
updFuncRule :: Update FuncDecl Rule
updFuncRule = updFunc id id id id

-- Auxiliary Functions

--- is function externally defined?
isExternal :: FuncDecl -> Bool
isExternal = isRuleExternal . funcRule

--- get variable names in a function declaration
allVarsInFunc :: FuncDecl -> [Int]
allVarsInFunc = allVarsInRule . funcRule

--- get arguments of function, if not externally defined
funcArgs :: FuncDecl -> [Int]
funcArgs = ruleArgs . funcRule

--- get body of function, if not externally defined
funcBody :: FuncDecl -> Expr
funcBody = ruleBody . funcRule

funcRHS :: FuncDecl -> [Expr]
funcRHS f | not (isExternal f) = orCase (funcBody f)
          | otherwise = []
 where
  orCase e
    | isOr e = concatMap orCase (orExps e)
    | isCase e = concatMap orCase (map branchExpr (caseBranches e))
    | otherwise = [e]

--- rename all variables in function
rnmAllVarsInFunc :: Update FuncDecl VarIndex
rnmAllVarsInFunc = updFunc id id id id . rnmAllVarsInRule

--- update all qualified names in function
updQNamesInFunc :: Update FuncDecl QName
updQNamesInFunc f = updFunc f id id (updQNamesInTypeExpr f) (updQNamesInRule f)

--- update arguments of function, if not externally defined
updFuncArgs :: Update FuncDecl [VarIndex]
updFuncArgs = updFuncRule . updRuleArgs

--- update body of function, if not externally defined
updFuncBody :: Update FuncDecl Expr
updFuncBody = updFuncRule . updRuleBody

-- Rule ----------------------------------------------------------------------

--- transform rule
trRule :: ([Int] -> Expr -> a) -> (String -> a) -> Rule -> a
trRule rule _ (Rule args exp) = rule args exp
trRule _ ext (External s) = ext s

-- Selectors

--- get rules arguments if it's not external
ruleArgs :: Rule -> [Int]
ruleArgs = trRule (\args _ -> args) failed

--- get rules body if it's not external
ruleBody :: Rule -> Expr
ruleBody = trRule (\_ exp -> exp) failed

--- get rules external declaration
ruleExtDecl :: Rule -> String
ruleExtDecl = trRule failed id

-- Test Operations

--- is rule external?
isRuleExternal :: Rule -> Bool
isRuleExternal = trRule (\_ _ -> False) (\_ -> True)

-- Update Operations

--- update rule
updRule :: ([Int] -> [Int]) ->
           (Expr -> Expr) ->
           (String -> String) -> Rule -> Rule
updRule fa fe fs = trRule rule ext
 where
  rule args exp = Rule (fa args) (fe exp)
  ext s = External (fs s)

--- update rules arguments
updRuleArgs :: Update Rule [VarIndex]
updRuleArgs f = updRule f id id

--- update rules body
updRuleBody :: Update Rule Expr
updRuleBody f = updRule id f id

--- update rules external declaration
updRuleExtDecl :: Update Rule String
updRuleExtDecl f = updRule id id f

-- Auxiliary Functions

--- get variable names in a functions rule
allVarsInRule :: Rule -> [Int]
allVarsInRule = trRule (\args body -> args ++ allVars body) (\_ -> [])

--- rename all variables in rule
rnmAllVarsInRule :: Update Rule VarIndex
rnmAllVarsInRule f = updRule (map f) (rnmAllVars f) id

--- update all qualified names in rule
updQNamesInRule :: Update Rule QName
updQNamesInRule = updRuleBody . updQNames

-- CombType ------------------------------------------------------------------

--- transform combination type
trCombType :: a -> (Int -> a) -> a -> (Int -> a) -> CombType -> a
trCombType fc _ _ _ FuncCall = fc
trCombType _ fpc _ _ (FuncPartCall n) = fpc n
trCombType _ _ cc _ ConsCall = cc
trCombType _ _ _ cpc (ConsPartCall n) = cpc n

-- Test Operations

--- is type of combination FuncCall?
isCombTypeFuncCall :: CombType -> Bool
isCombTypeFuncCall = trCombType True (\_ -> False) False (\_ -> False)

--- is type of combination FuncPartCall?
isCombTypeFuncPartCall :: CombType -> Bool
isCombTypeFuncPartCall = trCombType False (\_ -> True) False (\_ -> False)

--- is type of combination ConsCall?
isCombTypeConsCall :: CombType -> Bool
isCombTypeConsCall = trCombType False (\_ -> False) True (\_ -> False)

--- is type of combination ConsPartCall?
isCombTypeConsPartCall :: CombType -> Bool
isCombTypeConsPartCall = trCombType False (\_ -> False) False (\_ -> True)

-- Auxiliary Functions

missingArgs :: CombType -> Int
missingArgs = trCombType 0 id 0 id

-- Expr ----------------------------------------------------------------------

-- Selectors

--- get internal number of variable
varNr :: Expr -> Int
varNr expr = case expr of
  (Var n) -> n
  _       -> error "FlatCurryGoodies.varNr: no variable"

--- get literal if expression is literal expression
literal :: Expr -> Literal
literal expr = case expr of
  (Lit l) -> l
  _       -> error "FlatCurryGoodies.literal: no literal"

--- get combination type of a combined expression
combType :: Expr -> CombType
combType expr = case expr of
  (Comb ct _ _) -> ct
  _             -> error "FlatCurryGoodies.combType: no combined expression"

--- get name of a combined expression
combName :: Expr -> QName
combName expr = case expr of
  (Comb _ name _) -> name
  _               -> error "FlatCurryGoodies.combName: no combined expression"

--- get arguments of a combined expression
combArgs :: Expr -> [Expr]
combArgs expr = case expr of
  (Comb _ _ args) -> args
  _               -> error "FlatCurryGoodies.combArgs: no combined expression"

--- get number of missing arguments if expression is combined
missingCombArgs :: Expr -> Int
missingCombArgs = missingArgs . combType

--- get indices of variables in let declaration
letBinds :: Expr -> [(Int,Expr)]
letBinds expr = case expr of
  (Let vs _) -> vs
  _          -> error "FlatCurryGoodies.letBinds: no let declaration"

--- get body of let declaration
letBody :: Expr -> Expr
letBody expr = case expr of
  (Let _ e) -> e
  _         -> error "FlatCurryGoodies.letBody: no let declaration"

--- get variable indices from declaration of free variables
freeVars :: Expr -> [Int]
freeVars expr = case expr of
  (Free vs _) -> vs
  _           ->  error "FlatCurryGoodies.freeVars: no free variable declaration"

--- get expression from declaration of free variables
freeExpr :: Expr -> Expr
freeExpr expr = case expr of
  (Free _ e) -> e
  _          ->  error "FlatCurryGoodies.freeExpr: no free variable declaration"

--- get expressions from or-expression
orExps :: Expr -> [Expr]
orExps expr = case expr of
  (Or e1 e2) -> [e1,e2]
  _          -> error "FlatCurryGoodies.orExps: no or-expression"

--- get case-type of case expression
caseType :: Expr -> CaseType
caseType expr = case expr of
  (Case ct _ _) -> ct
  _             -> error "FlatCurryGoodies.caseType: no case expression"

--- get scrutinee of case expression
caseExpr :: Expr -> Expr
caseExpr expr = case expr of
  (Case _ e _) -> e
  _            -> error "FlatCurryGoodies.caseExpr: no case expression"

--- get branch expressions from case expression
caseBranches :: Expr -> [BranchExpr]
caseBranches expr = case expr of
  (Case _ _ bs) -> bs
  _             -> error "FlatCurryGoodies.caseBranches: no case expression"

-- Test Operations

--- is expression a variable?
isVar :: Expr -> Bool
isVar e = case e of
  Var _ -> True
  _     -> False

--- is expression a literal expression?
isLit :: Expr -> Bool
isLit e = case e of
  Lit _ -> True
  _     -> False

--- is expression combined?
isComb :: Expr -> Bool
isComb e = case e of
  Comb _ _ _ -> True
  _          -> False

--- is expression a let expression?
isLet :: Expr -> Bool
isLet e = case e of
  Let _ _ -> True
  _       -> False

--- is expression a declaration of free variables?
isFree :: Expr -> Bool
isFree e = case e of
  Free _ _ -> True
  _        -> False

--- is expression an or-expression?
isOr :: Expr -> Bool
isOr e = case e of
  Or _ _ -> True
  _      -> False

--- is expression a case expression?
isCase :: Expr -> Bool
isCase e = case e of
  Case _ _ _ -> True
  _          -> False

--- transform expression
trExpr :: (Int -> a) ->
          (Literal -> a) ->
          (CombType -> QName -> [a] -> a) ->
          ([(Int,a)] -> a -> a) ->
          ([Int] -> a -> a) ->
          (a -> a -> a) ->
          (CaseType -> a -> [b] -> a) ->
          (Pattern -> a -> b) ->
          (a -> TypeExpr -> a)
          -> Expr -> a
trExpr var _ _ _ _ _ _ _ _ (Var n) = var n

trExpr _ lit _ _ _ _ _ _ _ (Lit l) = lit l

trExpr var lit comb lt fr or cas branch typed (Comb ct name args)
  = comb ct name (map (trExpr var lit comb lt fr or cas branch typed) args)

trExpr var lit comb lt fr or cas branch typed (Let bs e)
  = lt (map (\ (n,exp) -> (n,f exp)) bs) (f e)
 where
  f = trExpr var lit comb lt fr or cas branch typed

trExpr var lit comb lt fr or cas branch typed (Free vs e)
  = fr vs (trExpr var lit comb lt fr or cas branch typed e)

trExpr var lit comb lt fr or cas branch typed (Or e1 e2) = or (f e1) (f e2)
 where
  f = trExpr var lit comb lt fr or cas branch typed

trExpr var lit comb lt fr or cas branch typed (Case ct e bs)
  = cas ct (f e) (map (\ (Branch pat exp) -> branch pat (f exp)) bs)
 where
  f = trExpr var lit comb lt fr or cas branch typed
trExpr var lit comb lt fr or cas branch typed (Typed e ty)
  = typed (trExpr var lit comb lt fr or cas branch typed e) ty

-- Update Operations

--- update all variables in given expression
updVars :: (Int -> Expr) -> Expr -> Expr
updVars var = trExpr var Lit Comb Let Free Or Case Branch Typed

--- update all literals in given expression
updLiterals :: (Literal -> Expr) -> Expr -> Expr
updLiterals lit = trExpr Var lit Comb Let Free Or Case Branch Typed

--- update all combined expressions in given expression
updCombs :: (CombType -> QName -> [Expr] -> Expr) -> Expr -> Expr
updCombs comb = trExpr Var Lit comb Let Free Or Case Branch Typed

--- update all let expressions in given expression
updLets :: ([(Int,Expr)] -> Expr -> Expr) -> Expr -> Expr
updLets lt = trExpr Var Lit Comb lt Free Or Case Branch Typed

--- update all free declarations in given expression
updFrees :: ([Int] -> Expr -> Expr) -> Expr -> Expr
updFrees fr = trExpr Var Lit Comb Let fr Or Case Branch Typed

--- update all or expressions in given expression
updOrs :: (Expr -> Expr -> Expr) -> Expr -> Expr
updOrs or = trExpr Var Lit Comb Let Free or Case Branch Typed

--- update all case expressions in given expression
updCases :: (CaseType -> Expr -> [BranchExpr] -> Expr) -> Expr -> Expr
updCases cas = trExpr Var Lit Comb Let Free Or cas Branch Typed

--- update all case branches in given expression
updBranches :: (Pattern -> Expr -> BranchExpr) -> Expr -> Expr
updBranches branch = trExpr Var Lit Comb Let Free Or Case branch Typed

--- update all typed expressions in given expression
updTypeds :: (Expr -> TypeExpr -> Expr) -> Expr -> Expr
updTypeds typed = trExpr Var Lit Comb Let Free Or Case Branch typed

-- Auxiliary Functions

--- is expression a call of a function where all arguments are provided?
isFuncCall :: Expr -> Bool
isFuncCall e = isComb e && isCombTypeFuncCall (combType e)

--- is expression a partial function call?
isFuncPartCall :: Expr -> Bool
isFuncPartCall e = isComb e && isCombTypeFuncPartCall (combType e)

--- is expression a call of a constructor?
isConsCall :: Expr -> Bool
isConsCall e = isComb e && isCombTypeConsCall (combType e)

--- is expression a partial constructor call?
isConsPartCall :: Expr -> Bool
isConsPartCall e = isComb e && isCombTypeConsPartCall (combType e)

--- is expression fully evaluated?
isGround :: Expr -> Bool
isGround exp
  = case exp of
      Comb ConsCall _ args -> all isGround args
      _ -> isLit exp

--- get all variables (also pattern variables) in expression
allVars :: Expr -> [Int]
allVars e = trExpr (:) (const id) comb lt fr (.) cas branch const e []
 where
  comb _ _ = foldr (.) id
  lt bs exp = exp . foldr (.) id (map (\ (n,ns) -> (n:) . ns) bs)
  fr vs exp = (vs++) . exp
  cas _ exp bs = exp . foldr (.) id bs
  branch pat exp = ((args pat)++) . exp
  args pat | isConsPattern pat = patArgs pat
           | otherwise = []

--- rename all variables (also in patterns) in expression
rnmAllVars :: Update Expr Int
rnmAllVars f = trExpr (Var . f) Lit Comb lt (Free . map f) Or Case branch Typed
 where
   lt = Let . map (\ (n,exp) -> (f n,exp))
   branch = Branch . updPatArgs (map f)

--- update all qualified names in expression
updQNames :: Update Expr QName
updQNames f = trExpr Var Lit comb Let Free Or Case (Branch . updPatCons f) typed
 where
  comb ct name args = Comb ct (f name) args
  typed e ty = Typed e (updQNamesInTypeExpr f ty)

-- BranchExpr ----------------------------------------------------------------

--- transform branch expression
trBranch :: (Pattern -> Expr -> a) -> BranchExpr -> a
trBranch branch (Branch pat exp) = branch pat exp

-- Selectors

--- get pattern from branch expression
branchPattern :: BranchExpr -> Pattern
branchPattern = trBranch (\pat _ -> pat)

--- get expression from branch expression
branchExpr :: BranchExpr -> Expr
branchExpr = trBranch (\_ e -> e)

-- Update Operations

--- update branch expression
updBranch :: (Pattern -> Pattern) -> (Expr -> Expr) -> BranchExpr -> BranchExpr
updBranch fp fe = trBranch branch
 where
  branch pat exp = Branch (fp pat) (fe exp)

--- update pattern of branch expression
updBranchPattern :: Update BranchExpr Pattern
updBranchPattern f = updBranch f id

--- update expression of branch expression
updBranchExpr :: Update BranchExpr Expr
updBranchExpr = updBranch id

-- Pattern -------------------------------------------------------------------

--- transform pattern
trPattern :: (QName -> [Int] -> a) -> (Literal -> a) -> Pattern -> a
trPattern pattern _ (Pattern name args) = pattern name args
trPattern _ lpattern (LPattern l) = lpattern l

-- Selectors

--- get name from constructor pattern
patCons :: Pattern -> QName
patCons = trPattern (\name _ -> name) failed

--- get arguments from constructor pattern
patArgs :: Pattern -> [Int]
patArgs = trPattern (\_ args -> args) failed

--- get literal from literal pattern
patLiteral :: Pattern -> Literal
patLiteral = trPattern failed id

-- Test Operations

--- is pattern a constructor pattern?
isConsPattern :: Pattern -> Bool
isConsPattern = trPattern (\_ _ -> True) (\_ -> False)

-- Update Operations

--- update pattern
updPattern :: (QName -> QName) ->
              ([Int] -> [Int]) ->
              (Literal -> Literal) -> Pattern -> Pattern
updPattern fn fa fl = trPattern pattern lpattern
 where
  pattern name args = Pattern (fn name) (fa args)
  lpattern l = LPattern (fl l)

--- update constructors name of pattern
updPatCons :: (QName -> QName) -> Pattern -> Pattern
updPatCons f = updPattern f id id

--- update arguments of constructor pattern
updPatArgs :: ([Int] -> [Int]) -> Pattern -> Pattern
updPatArgs f = updPattern id f id

--- update literal of pattern
updPatLiteral :: (Literal -> Literal) -> Pattern -> Pattern
updPatLiteral f = updPattern id id f

-- Auxiliary Functions

--- build expression from pattern
patExpr :: Pattern -> Expr
patExpr = trPattern (\ name -> Comb ConsCall name . map Var) Lit