1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
module Analysis.RequiredValues
(AType(..), showAType, AFType(..), showAFType, lubAType, reqValueAnalysis)
where
import Analysis.Types
import Analysis.ProgInfo
import Analysis.TotallyDefined(siblingCons)
import FlatCurry.Types
import FlatCurry.Goodies
import List hiding (union,intersect)
import Sort(mergeSortBy)
data AType = Cons [QName] | AnyC | Any
empty :: AType
empty = Cons []
isConsValue :: AType -> Bool
isConsValue av = case av of Cons cs -> not (null cs)
_ -> False
lubAType :: AType -> AType -> AType
lubAType Any _ = Any
lubAType AnyC Any = Any
lubAType AnyC AnyC = AnyC
lubAType AnyC (Cons _) = AnyC
lubAType (Cons _) Any = Any
lubAType (Cons _) AnyC = AnyC
lubAType (Cons c) (Cons d) = Cons (union c d)
joinAType :: AType -> AType -> AType
joinAType Any av = av
joinAType AnyC Any = AnyC
joinAType AnyC AnyC = AnyC
joinAType AnyC (Cons c) = Cons c
joinAType (Cons c) Any = Cons c
joinAType (Cons c) AnyC = Cons c
joinAType (Cons c) (Cons d) = Cons (intersect c d)
compatibleType :: AType -> AType -> Bool
compatibleType t1 t2 = joinAType t1 t2 /= empty
showAType :: AOutFormat -> AType -> String
showAType _ Any = "any"
showAType _ AnyC = "cons"
showAType _ (Cons cs) = "{" ++ intercalate "," (map snd cs) ++ "}"
data AFType = EmptyFunc | AFType [([AType],AType)]
showAFType :: AOutFormat -> AFType -> String
showAFType _ EmptyFunc = "EmptyFunc"
showAFType aof (AFType fts) = intercalate " | " (map showFType fts)
where
showFType (targs,tres) =
"(" ++ intercalate "," (map (showAType aof) targs) ++ " -> " ++
showAType aof tres ++ ")"
showCalledFuncs :: [(QName,AFType)] -> String
showCalledFuncs =
intercalate "|" . map (\ ((_,f),at) -> f++"::"++showAFType _ at)
type AEnv = [(Int,AType)]
extendEnv :: AEnv -> [Int] -> AEnv
extendEnv env vars = zip vars (repeat Any) ++ env
updateVarInEnv :: AEnv -> Int -> AType -> AEnv
updateVarInEnv [] v _ = error ("Variable "++show v++" not found in environment")
updateVarInEnv ((i,ov):env) v nv =
if i==v then (i,nv) : env
else (i,ov) : updateVarInEnv env v nv
dropEnv :: Int -> ([a],b) -> ([a],b)
dropEnv n (env,rtype) = (drop n env, rtype)
sortEnvTypes :: [(AEnv,AType)] -> [(AEnv,AType)]
sortEnvTypes = mergeSortBy (\ (e1,t1) (e2,t2) -> (t1,e1) <= (t2,e2))
maxReqValues :: Int
maxReqValues = 3
reqValueAnalysis :: Analysis AFType
reqValueAnalysis =
combinedDependencyFuncAnalysis "RequiredValues"
siblingCons EmptyFunc analyseReqVal
analyseReqVal :: ProgInfo [(QName,Int)] -> FuncDecl -> [(QName,AFType)]
-> AFType
analyseReqVal consinfo (Func (m,f) arity _ _ rule) calledfuncs
| m==prelude = maybe (anaresult rule) id (lookup f preludeFuncs)
| otherwise =
anaresult rule
where
anaresult (External _) = AFType [(take arity (repeat Any),AnyC)]
anaresult (Rule args rhs) = analyseReqValRule consinfo calledfuncs args rhs
preludeFuncs = [("failed",AFType [([],empty)])
,("==",AFType [([AnyC,AnyC],AnyC)])
,("=:=",AFType [([AnyC,AnyC],AnyC)])
,("$",AFType [([AnyC,Any],AnyC)])
,("$!",AFType [([AnyC,AnyC],AnyC)])
,("$!!",AFType [([AnyC,AnyC],AnyC)])
,("$#",AFType [([AnyC,AnyC],AnyC)])
,("$##",AFType [([AnyC,AnyC],AnyC)])
,("compare",AFType [([AnyC,AnyC],AnyC)])
]
analyseReqValRule :: ProgInfo [(QName,Int)] -> [(QName,AFType)] -> [Int] -> Expr
-> AFType
analyseReqValRule consinfo calledfuncs args rhs =
let initenv = extendEnv [] args
envtypes = reqValExp initenv rhs AnyC
rtypes = map snd envtypes
in
if any (==AnyC) rtypes && any isConsValue rtypes
then
let somecons = maybe (error "Internal error")
(\ (Cons (c:_)) -> c)
(find isConsValue rtypes)
othercons = maybe [] (map fst) (lookupProgInfo somecons consinfo)
consenvtypes = foldr lubEnvTypes []
(map (\rt -> reqValExp initenv rhs rt)
(map (\c -> Cons [c]) (somecons:othercons)))
in AFType (map (\ (env,rtype) -> (map snd env, rtype))
(lubAnyEnvTypes (if length othercons >= maxReqValues
then envtypes
else consenvtypes)))
else AFType (map (\ (env,rtype) -> (map snd env, rtype))
(lubAnyEnvTypes envtypes))
where
reqValExp env exp reqtype = case exp of
Var v -> [(updateVarInEnv env v reqtype, reqtype)]
Lit _ -> [(env, AnyC)]
Comb ConsCall c _ -> [(env, Cons [c])]
Comb FuncCall qf funargs ->
if qf==(prelude,"?") && length funargs == 2
then
reqValExp env (Or (head funargs) (funargs!!1)) reqtype
else
maybe [(env, AnyC)]
(\ftype -> case ftype of
EmptyFunc -> [(env, empty)]
AFType ftypes ->
let matchingtypes = filter (compatibleType reqtype . snd)
ftypes
matchingenvs =
map (\ (ts,rt) ->
let argenvs = concatMap (envForConsArg env)
(zip ts funargs)
in (foldr joinEnv env argenvs, rt))
matchingtypes
in if null matchingtypes
then [(env, empty)]
else matchingenvs )
(lookup qf calledfuncs)
Comb _ _ _ -> [(env, AnyC)]
Or e1 e2 -> lubEnvTypes (reqValExp env e1 reqtype)
(reqValExp env e2 reqtype)
Case _ e branches ->
let
nfbranches = filter (\ (Branch _ be) ->
be /= Comb FuncCall (prelude,"failed") [])
branches
reqenvs = filter (not . null)
(map (envForBranch env reqtype e) nfbranches)
in if null reqenvs
then [(env, empty)]
else foldr1 lubEnvTypes reqenvs
Free vars e ->
map (dropEnv (length vars))
(reqValExp (extendEnv env vars) e reqtype)
Let bindings e ->
map (dropEnv (length bindings))
(reqValExp (extendEnv env (map fst bindings)) e reqtype)
Typed e _ -> reqValExp env e reqtype
envForConsArg env (reqtype,exp) =
case reqtype of
AnyC -> [foldr1 lubEnv (map fst (reqValExp env exp AnyC))]
Cons qc -> [foldr1 lubEnv (map fst (reqValExp env exp (Cons qc)))]
_ -> []
envForBranch env reqtype exp (Branch pat bexp) =
filter (\ (_,rt) -> compatibleType rt reqtype) branchtypes
where
branchtypes = case pat of
LPattern _ -> reqValExp env bexp reqtype
Pattern qc pvars ->
let caseenvs = map fst (reqValExp env exp (Cons [qc]))
branchenvs =
foldr lubEnvTypes []
(map (\caseenv ->
reqValExp (extendEnv caseenv pvars) bexp reqtype)
caseenvs)
in map (dropEnv (length pvars)) branchenvs
lubEnvTypes :: [(AEnv,AType)] -> [(AEnv,AType)] -> [(AEnv,AType)]
lubEnvTypes [] ets2 = ets2
lubEnvTypes ets1@(_:_) [] = ets1
lubEnvTypes ((env1,t1):ets1) ((env2,t2):ets2)
| t1==empty = lubEnvTypes ets1 ((env2,t2):ets2)
| t2==empty = lubEnvTypes ((env1,t1):ets1) ets2
| t1==t2 = (lubEnv env1 env2, t1) : lubEnvTypes ets1 ets2
| t1 < t2 = (env1,t1) : lubEnvTypes ets1 ((env2,t2):ets2)
| otherwise = (env2,t2) : lubEnvTypes ((env1,t1):ets1) ets2
lubAnyEnvTypes :: [(AEnv,AType)] -> [(AEnv,AType)]
lubAnyEnvTypes envtypes =
if null envtypes || snd (head envtypes) /= AnyC
then envtypes
else foldr1 lubEnvType envtypes : tail envtypes
lubEnvType :: (AEnv,AType) -> (AEnv,AType) -> (AEnv,AType)
lubEnvType (env1,t1) (env2,t2) = (lubEnv env1 env2, lubAType t1 t2)
lubEnv :: AEnv -> AEnv -> AEnv
lubEnv [] _ = []
lubEnv (_:_) [] = []
lubEnv ((i1,v1):env1) env2@(_:_) =
maybe (lubEnv env1 env2)
(\v2 -> (i1, lubAType v1 v2) : lubEnv env1 env2)
(lookup i1 env2)
joinEnv :: AEnv -> AEnv -> AEnv
joinEnv [] _ = []
joinEnv (_:_) [] = []
joinEnv ((i1,v1):env1) env2@(_:_) =
maybe (joinEnv env1 env2)
(\v2 -> (i1, joinAType v1 v2) : joinEnv env1 env2)
(lookup i1 env2)
prelude :: String
prelude = "Prelude"
union :: [a] -> [a] -> [a]
union [] ys = ys
union xs@(_:_) [] = xs
union (x:xs) (y:ys) | x==y = x : union xs ys
| x<y = x : union xs (y:ys)
| otherwise = y : union (x:xs) ys
intersect :: [a] -> [a] -> [a]
intersect [] _ = []
intersect (_:_) [] = []
intersect (x:xs) (y:ys) | x==y = x : intersect xs ys
| x<y = intersect xs (y:ys)
| otherwise = intersect (x:xs) ys
|