
Werner Kluge

Abstract Computing Machines

– a λ-calculus perspective –

November 19, 2004

Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo





Preface

This monograph looks at computer organization from a strictly conceptual
point of view to identify the very basic mechanisms and runtime structures
necessary to perform algorithmically specified computations. It completely
abstracts from concrete programming languages and machine architectures,
taking the λ-calculus – a theory of computable functions – as the basic pro-
gramming and program execution model. In its simplest form, the λ-calculus
talks about expressions that are constructed from just three syntactical figures
– variables, functions (in this context called abstractions) and applications
(of operator to operand expressions) – and about a single transformation rule
that governs the substition of variable occurrences in expressions by other ex-
pressions. This β-reduction rule contains in a nutshell the whole story about
computing, specifically about the role of variables and variable scoping in this
game.

Different implementations of the β-reduction rule in conjunction with
strategies that define the sequencing of β-reductions in complex expressions
gives rise to a variety of abstract λ-calculus machines that are studied in
this text. These machines share, in one way or another, the components of
Landin’s secd machine – a program text to be executed, a runtime envi-
ronment that holds delayed substitutions, a value stack, and a dump stack
for return continuations – but differ with respect to the internal representa-
tion of λ-expressions, specifically abstractions, the structure of the runtime
environment and the mechanisms of program execution.

This text covers more than just implementations of functional or function-
based languages such as miranda, haskell, clean, ml or scheme. They
are based on what is called a weakly normalizing λ-calculus that uses a naive
version of the β-reduction rule. The emphasis is instead on λ-calculus machines
that are fully normalizing, using a complete and correct implementation of the
β-reduction rule which includes the orderly resolution of naming conflicts that
may occur when free variables are substituted under abstractions. This feature
is an essential prerequisite for correct symbolic computations that treat both
functions and variables truly as first class objects. It may, for instance, be



used to advantage in theorem provers to establish equality between two terms
that contain variables or to symbolically simplify expressions in the process
of high-level program optimizations.

In weakly normalizing machines, the flavors of a full-fledged β-reduction
are traded in for naive substitutions that are simpler to implement and re-
quire less complex runtime structures, resulting in improved runtime efficiency.
Naming conflicts are consequently avoided by outlawing substitutions under
abstractions, with the consequence that only ground terms (or basic values)
can be computed. Weakly normalizing machines are therefore the standard ve-
hicles for the implementation of functional or function-based languages whose
semantics conforms to this restriction. However, they are also used as inte-
gral parts of fully normalizing machines to perform the majority of those
β-reductions that in fact can be carried out naively. Whenever substitutions
need to be pushed under abstractions, a special mechanism equivalent to full
β-reductions takes over to perform renaming operations that resolve potential
name clashes.

Abstract machines for classical imperative languages are shown to be de-
scendants of weakly normalizing machines that allow side-effecting operations,
specified as assignments to bound variables, on the runtime emvironment.
These side effects destroy important invariance properties of the λ-calculus
that guarantee the determinacy of results irrespective of execution orders,
leaving just the static scoping rules for bound variables intact. In this de-
generate form of the λ-calculus, programs are executed for their effects on
the environment, as opposed to computing the values of the expressions of a
weakly or fully normalizing λ-calculus.

This monograph, though not exactly mainstream, may be used in a grad-
uate course on computer organization/architecture that focuses on the essen-
tials of performing computations mechanically. It includes an introduction to
the λ-calculus, specifically a nameless version suitable for machine implemen-
tation, and then continues to describes various fully and weakly normalizing
λ-calculus machines at different levels of abstractions (direct interpretation,
graph interpretation, execution of compiled code), followed by two kinds of ab-
stract machines for imperative languages. The workings of these machines are
specified by sets of state transition rules. It also specifies, for code-executing
abstract machines, compilation schemes that transform an applied λ-calculus
taken as a reference source language to abstract machine code. Whenever
deemed helpful, the execution of small example programs is also illustrated in
a step-by-step fashion by sequences of machine state transitions.

I have used most of the material of this monograph in several graduate
courses on computer organization which I taught over the years at the Uni-
versity of Kiel. Some of the material (Chaps. ??, ?? and the easier parts
of Chaps. ??, ??) I even used in an undergraduate course on programming.
The general impression was that at least the brighter students, after some
time of getting used to the approach and to the notation, caught on pretty
well to the message that I wanted to get across: understanding basic concepts

VI



and principles of performing computations by machinery (with substitution as
the most important operation) that are invariant against trendy ways of doing
things in real computing machines, and how they relate to basic programming
paradigms.

Acknowledgments

There are several people who have contributed to this text with discussions
and suggestions relating to its contents, with critical comments on earlier
drafts, and with careful proof reading that uncovered many errors (of which
some would have been somewhat embarrassing).

I am particularly indebted to Claus Reinke who gave chapters ?? to ??
and appendix ?? a very thorough going-over, made some valuable recom-
mendations that helped to improve verbal explanations and also the formal
apparatus, specifically in the appendix on input/output which I have largely
adopted from his excellent PhD thesis, and provided me with a long list of
ambiguities, notational inconsistencies and errors. Some intensive discussions
with Sven-Bodo Scholz on head-order reduction, specifically on the problem of
shared evaluation, led to substantial improvements of chapters ??,?? and ??.
He also pointed out quite a few things in chapters ?? and ?? that needed
clarification. I also had two enlightening discussions with Henk Barendregt
and Rinus Plasmeijer on λ-calculus and on theorem proving that helped to
shape chapters ??, ?? and appendix ??. Ulrich Bruening checked and made
some helpful comments on chapters ?? and ??. Hans Langmaack was always
available for some insightful discussions of language issues.

Makoto Amamiya gave me the opportunity to teach parts of of this text
in a one-week seminar course at Kyushu University in Fukuoka/Japan. The
ensuing discussions gave me a fairly good idea of how the material would sink
in with graduate students who have a slightly different background, and they
also helped to correct a few flaws.

Kay Berkling, Claudia Schmittgen and Erich Valkema carefully proof-read
parts of a text that was more or less unfamiliar scientific territory to them,
pointing out a few things that needed to be clarified, explained in more detail
(by more examples), or simply be corrected.

Last not least, I wish to thank the people at Springer for their support
of this project, especially Ingeborg Mayer, Ronan Nugent, Frank Holzwarth
and, most importantly, an anonymous copy-editor who did an excellent job
of polishing the style of presentation, the layout of the text, and the English.
He hardly missed anything that needed to be upgraded or corrected.

... and there was M whose occassional peptalks kept me going.

Werner Kluge, November 2004

VII


